
zkChannels Private Payments Protocol[DRAFT]

Bolt Labs, Inc.
2021-08-29

Contents

Chapter 1. Summary 5
1.1. Overview of zkChannels 6

Chapter 2. Cryptographic Building Blocks and Notation 9
2.1. Preliminaries 10
2.2. Pointcheval Sanders signatures 14

Chapter 3. Off-Network and On-Network Subprotocols 19
3.1. Assumptions and Notation 19
3.2. Sessions 19
3.3. Off-network Channel Protocol ΠzkAbacus 20
3.4. On-network Escrow and Disbursement Protocol ΠzkEscrowAgent 26

Chapter 4. zkChannels 37
4.1. Preliminaries 37
4.2. System set up 37
4.3. Channel establishment 37
4.4. Channel payments 39
4.5. Channel closing 40
4.6. Discussion 41
4.7. Implementation overview 42

Bibliography 43

Appendix. 45
A. Proof Strategy Overview 45
B. Draft ΠzkAbacus ideal functionality 46
C. Draft ΠzkEscrowAgent ideal functionality 57

3

CHAPTER 1

Summary

Ch 1: Summary Draft—not for distribution. Draft—not for distribution.

In this chapter, we provide a high-level overview of the zkChannels protocol and provide an
outline of the rest of the document.

1.1. Overview of zkChannels

zkChannels is a flexible protocol that enables anonymous and scalable payments. zkChannels
integrates with a wide variety of payment networks, including account-based and even unspent
transaction output-based (UTXO) cryptocurrencies, provided these networks meet relatively basic
requirements. The zkChannels protocol is inspired by the Lightning Network (LN) and features
low-cost, private, off-network transactions via a peer-to-peer network of bidirectional payment
channels using cryptographic privacy-preserving techniques. That is, the goal of zkChannels is to
provide stronger privacy guarantees than those afforded by current solutions. To do so, we rely on
non-interactive zero-knowledge proofs of knowledge (NI-ZKPoK), blind signatures, and commitments.
With zkChannels, off-network transactions are inherently unlinkable, and efficient.

A payment channel allows two parties to escrow funds in an on-network account and then make
payments to each other off chain. An on-network arbitration mechanism allows participants to
then close on their most recent balances. Typically, payment channel protocols are symmetric with
respect to the participants. The zkChannels protocol, however, is asymmetric. zkChannels allows
a customer (C) and a merchant (M) to open a bidirectional payment channel with respect to a
payment network capable of arbitration, which we refer to as the arbiter (J)1. As is standard for
payment channels, both parties may close the channel at any time and an honest party is guaranteed
to be paid at least the balance they are owed. Our protocol, however, achieves privacy at the cost of
asymmetry: the customer initiates all payments, each of which is anonymous and cannot be linked to
any other payments. That is, the merchant is at most pseudonymous and remains identifiable across
all channels; the customer is at most pseudonymous during channel establishment and closure, but
has the ability to make payments anonymously as long as they have an open channel with sufficient
balance. That is, the customer’s anonymity set for a payment is the set of all customers with whom
the given merchant has a channel open.

Privacy-preserving payment channels are composed of two parts, an off-network mechanism to
allow payments and a set of on-network procedures that allow for escrow and arbitration during
closure. To achieve a protocol that works for virtually any payment network, we design an off-network
payment channel protocol that integrates with a separately-defined arbitration protocol.

In zkChannels, all payments must be initiated by the customer, but both positive and negative
payment values are supported. The payment channel consists of a sequence of states: the customer
always has a special closing authorization signature for the current state when they initiate a
payment with a current payment tag ; they then receive a closing authorization signature for the new
state, invalidate the old state by providing the merchant a revocation secret, and finally receive a
payment tag for the new state. From the merchant’s perspective, each successful payment results
in a revocation secret that allows the merchant to track whether a given state has been spent, but
the merchant learns nothing else about the payment except the amount. The merchant is, however,
confident that payments are only successful if they are initiated on a valid, unspent state of sufficient
balance. The zkChannels protocol itself is agnostic as to the purpose of the payments, but does
provide the integration points for request and provision of services, and in particular, we identify at
which point of our payment subprotocol a party may reasonably consider a payment complete.

At a high level, the arbiter allows funds to be kept in accounts. Accounts have encumbrances
that specify how funds may be disbursed. Accounts may be created, modified, or closed through
transactions. In the case of a cryptocurrency network, transactions that are accepted and/or
confirmed are public; participants are responsible for monitoring the ledger for relevant transactions.
Theoretically, an arbiter without a public ledger may be used, but requires direct communication
between the arbiter and channel participants and is not the focus of this paper. The arbiter J is

1In practice, we use a cryptocurrency network as the arbiter J

6

Ch 1: Summary Draft—not for distribution. Draft—not for distribution.

responsible for receiving, validating, and processing transactions. If the arbiter is a payment network
such as a cryptocurrency, all zkChannels transactions must be well-formed according to the given
payment network’s rules; the instantiation must give an exact specification.

From the customer’s perspective, they can always initiate channel closure, even if the merchant
aborts during the payment process; the only caveat is that a merchant may accept the payment
amount without issuing a new payment tag or providing the agreed-upon service, but this is always
a risk in customer-merchant relations.

The customer and/or merchant funds the channel with an escrow transaction on the payment
network, in such a way that each party is convinced they will be able to close the channel with the
correct balances via party-specific closing transactions. That is, the merchant receives a channel-
specific closing transaction that spends from the escrow transaction and is valid as long as the channel
remains open, and the customer can always form a closing transaction that spends from either the
escrow or the merchant closing transaction, as appropriate.

Each payment made on a channel results in an updated closing authorization signature for
the customer, which they can use to close down the channel with the most recent balances. If the
customer double spends, the merchant can use the revocation secret to craft a dispute transaction
that spends from the customer closing transaction. As punishment, if the dispute transaction is
deemed valid by the network, the merchant receives the entire channel balance.

A consequence of our dispute mechanism is that both parties must be online or designate a
watchtower service to track transactions related to their open channels. A unilateral close by either
party triggers a dispute period: if the merchant closes a channel, the customer must respond by
posting their own closing transaction with the correct channel balances before the dispute period is
over, or all the money in the channel goes to the merchant; similarly, if a customer tries to close with
an outdated state, the merchant has to use the corresponding revocation secret before the dispute
period is over.

We briefly describe the protocol in four phases:

(1) System setup. Each merchant using zkChannels should generate a long-lived keypair for use
with all channels.

(2) Channel initialization and establishment. The customer generates an asymmetric keypair
for use with a single channel, for which the public key is called the channel public key. Each channel
is associated with a unique channel identifier, which we denote by cid . The parties negotiate
initial channel balances and negotiate any needed auxiliary data for on-network transactions. The
customer then forms an initial state for the channel. This state consists of the channel identifer,
the initial customer and merchant balances, and a state-specific value called the revocation lock.
To establish the channel:
(a) The merchant provides the customer with a closing authorization signature that allows the

customer to close down the channel on the initial state balances, provided the funds are
escrowed on network in the expected manner.

(b) The customer provides the merchant with any authorization necessary for the merchant to
initiate channel closure on network.

(c) The parties, each satisfied that they can close down the channel on appropriate balances,
fund the channel.

(d) Once the channel funding has been confirmed on network, the merchant activates the channel
by issuing the customer a payment tag, which the customer will be able to use to make
a payment from the initial state. The customer then uses a special unlinking protocol to
ensure privacy of all payments made on the channel. At this point, the channel is considered
established by both parties.

(3) Channel payments. Channel payments are initiated by the customer from a current state s
and proceed as follows:
(a) The customer forms and commits to a new state s′ and proves that this state is formed

from the current state s using the payment amount ε. The customer also proves they have

7

Ch 1: Summary Draft—not for distribution. Draft—not for distribution.

a valid, unspent payment tag for s. The merchant knows ε and can reject the payment if
the amount is unacceptable.

(b) If the merchant is satisfied, the merchant blindly issues a closing authorization signature on
s′. This closing authorization signature allows the customer to initiate channel closure for
the balances indicated in s′.

(c) If the customer is satisfied the closing authorization signature is valid, the customer sends a
revocation secret on s to the merchant. The revocation secret is linked to the revocation
lock for s and allows the merchant to prove double spends and claim the entire channel
balance as punishment.

(d) The merchant validates the revocation lock/secret pair and, if satisfied, issues a payment
tag on s′. This tag allows the customer to spend from s′ in the future and completes the
payment protocol.

If the merchant does not provide the requested service for a given payment, the customer must
dispute this matter outside of the zkChannels protocol. That is, the customer must close the
channel on the most recent state, even if that state reflects a payment made for services the
merchant did not render.

(4) Channel closure. There are three options for channel closure:
(a) The customer and merchant can collaborate off-network to create a mutual closing transac-

tion. This requires fewer on-network transactions and is therefore cheaper.
(b) The customer can unilaterally initiate channel closure by using their current closing autho-

rization signature to create an on-network customer closing transaction. This transaction:
(i) spends from the escrow transaction,

(ii) allows the merchant balance that is indicated in the associated closing authorization
message to be redeemed by the merchant immediately;

(iii) allows the indicated customer balance to be redeemable by the customer after a
timeout or by the merchant immediately if a double spend is shown.

That is, the timeout allows the merchant to craft a dispute transaction that proves a double
spend, and if the merchant successfully shows a double spend, the effect is that the entire
channel balance is paid out to the merchant.

(c) The merchant can unilaterally initiate channel closure by sending their signed merchant
closing transaction to the payment network. This transaction pays the entire channel balance
to the merchant after a timeout. The timeout allows the customer to dispute the balance
allocation: to do so, the customer uses their current closing authorization signature to create
a new closing transaction and posts this to the network.

8

CHAPTER 2

Cryptographic Building Blocks and Notation

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

2.1. Preliminaries

In this chapter, we describe and establish notation for the core cryptographic primitives useful
for understanding and implementing the zkChannels protocol.

For disambiguation among protocols, we reference an algorithm Alg from a scheme Π as Π.Alg,
unless the underlying scheme is clear from context. We indicate smampling an element s from a set

S uniformly at random as s
$←− S. A tuple of ` elements of a set S is in the set S`.

We use multiplicative notation for group operations, so a scalar multiplication of g ∈ G by a
is denoted ga. A group G has identity element 1G, and the set of non-identity elements is denoted
G∗ = G\{1G}.

The ring of integers mod q is denoted Zq.

2.1.1. Commitment Schemes.

Definition 1 (Commitment scheme). A commitment scheme ΠCom with security parameter λ
is a tuple of algorithms (Setup,Commit,Decommit), where the following hold:

– Setup(1λ)→ pp. The algorithm Setup take a security parameter 1λ and generates public
parameters pp for ΠCom, namely a finite message space X , a finite randomness space R,
and a finite commitment space C.

– Commit(pp,m, r)→ com(m; r). This algorithm defines a function that takes as input pp, a
message m ∈ X , and an optional randomness parameter r ∈ R, and outputs a commitment
com(m; r) ∈ C.

– Decommit(pp, com,m, r) → {false, true}. On input pp and a tuple (com,m, r), Decommit
outputs either true or false. For all m ∈ X and r ∈ R, this algorithm must satisfy
Decommit(pp,Commit(pp,m, r),m, r) = true.

If Decommit(pp, com,m, r) = true, then we say that the pair (m, r) is an opening of the commitment
com.

Commitment schemes should satisfy the following properties:

Definition 2 (Hiding). A commitment scheme Π is information-theoretically hiding if for all
x ∈ X and com ∈ C, we have Pr[x | com] = Pr[x].

Definition 3 (Binding). A commitment scheme Π is computationally binding if for all p.p.t.
adversaries A, there exists a negligible function negl, such that

Pr[Π.Commit(pp, x, r) = Π.Commit(pp, x′, r′)∧x 6= x′|pp← Setup(1λ), x, x′, r, r′ ← A(pp)] < negl(λ).

We may relax the definition of hiding to the computational setting if desired. Similarly, we
may require more stringent security for the binding property and define information-theoretically
binding commitments. In practice, a scheme that is computationally both hiding and binding is often
sufficient. However, for our purposes, we prefer an information-theoretically hiding commitment
scheme.

We remark that commitment schemes may be information-theoretically hiding or information-
theoretically binding, but not both. If no randomness parameter r is supplied, the resulting
commitment is not information-theoretically hiding. In such a case, we may refer to the commitment
of a message m as com(m;⊥).

If the inputs m and r are clear from context, we sometimes denote the output of Commit as com.
or simply com(m).

Example 2.1 (Pedersen Commitments). We define Pedersen commitments [Ped92] over a vector
of messages from Zq, where G is a cyclic group of prime order q. Here the order q is implicitly
dependent on the security parameter λ; these parameters must ensure the computational hardness of
the discrete logarithm problem in G.

We have the following algorithms:

10

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

– Setup(1λ) → pp. The algorithm Setup take a security parameter λ and generates public
parameters pp = (q,G, h, g1, g2, . . . , g`), where q is a prime, G is a cyclic group of order q, and
h, g1, g2, . . . , g` are non-identity elements chosen uniformly at random from G (ensuring both
that h and gi for 1 ≤ i ≤ ` are generators and that discrete logarithm relationships among
the chosen generators are unknown). We sometimes use the notation g = (g1, g2, . . . , g`).

– Commit(pp,m; r)→ com(m; r). This algorithm defines a function that takes as input pp, a
message m = (m1,m2, . . . ,m`) ∈ Z`q, and an optional randomness parameter r ∈ Zq, which
should be chosen uniformly at random. Commit then outputs a commitment com(m; r) =

hr
∏`
i=1 gi

mi , which we sometimes denote as com if m and r are clear from context.

– Decommit(pp, com,m, r) → {false, true}. On input pp and a tuple (com,m, r), Decommit

checks if com
?
= hr

∏`
i=1 gi

mi , and outputs true if com is a valid commitment to the message
m or false otherwise.

Pedersen commitments have the useful property that they are homomorphic: for m,m′ ∈ Z`q and
randomness parameters r, r′ ∈ Zq, we have Commit(m; r) ·Commit(m′; r′) = Commit(m + m′; r+ r′).

2.1.2. Zero Knowledge Schemes. A Zero-Knowledge (ZK) proof is a method that enables a
prover to convince a verifier that a given statement is true without revealing any additional secret
information. Informally, a Zero-Knowledge Proof of Knowledge (ZKPoK) is a special kind of proof
where the statement is only that the prover possesses some secret information. The ZKPoK is
typically interactive but can made non-interactive. We briefly review the main concepts here.

Zero-Knowledge proofs were first introduced by Goldwasser, Micali, and Rackoff [GMR85].

Definition 4 (ZK proof). A zero-knowledge proof system for a language L is a pair (P, V),
where P is the prover and V the verifier, satisfying

(1) Completeness: For all x ∈ L, a verifier V accepts after interacting with the prover P .
(2) Soundness: For all x 6∈ L, and for all provers P ∗, a verifier V rejects after interacting with

P ∗ with probability at least 1
2 .

(3) Perfect zero-knowledge: For all verifiers V ∗, there exists a simulator S∗ that is a randomized
polynomial time algorithm such that for all x ∈ L,

{transcript((P, V ∗)(x))} = {S∗(x)}.

A slightly different definition is the proof of knowledge:

Definition 5 (ZKPoK). Let x be a statement in the language L and define a relation R =
{(x,w) : x ∈ L,w ∈ W (x)}, where W (x) is the set of possible witnesses for x. A zero-knowledge
proof of knowledge (ZKPok) is a pair (P, V), where P is the prover and V is the verifier, satisfying

(1) Completeness: For all x ∈ L and w a valid witness for x, a verifier V (x) accepts after
interacting with the prover P (x,w).

(2) Validity : There exists a knowledge extractor E that can extract the witness given access to
a possibly malicious prover P ∗ with probability as high as the probability that P ∗ convinces
an honest verifier. This guarantees that a prover that doesn’t know the witness cannot
convince an honest verifier.

Definition 6 (ZKAoK). A zero-knowledge argument of knowledge (ZKAoK) is a limitation of
Definitions 4 and 5 to only allow polynomial-time malicious provers P ∗ (in the previous definitions,
this prover could have been unbounded).

For concreteness, we briefly review the Schnorr protocol [Sch91].

Example 2.2 (Schnorr Protocol). Let G be a cyclic group of prime order q, and choose non-
identity elements h, g1, g2, ..., g` ∈ G uniformly at random. Assume we have a Pedersen commitment

11

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

A := com(µ1, . . . , µ`; ρ) = hρ
∏`
i=1 g

µi

i . Standard notation for a proof of knowledge of the opening of
such a commitment is

PK{(µ1, . . . , µ`, ρ) : A = hρ
∏̀
i=1

gµi

i }.

When we wish to emphasize the opening secrets µ1, . . . , µ`, ρ (i.e., because we wish to prove some
further properties about these secrets), we instead write

PK{(µ1, . . . , µ`, ρ) : A = com(µ1, . . . , µ`; ρ)}.

We give the basic honest-verifier zero knowledge Schnorr protocol for a prover P to prove
knowledge of the opening of the commitment A to a verifier V :

(1) Commitment phase: The prover P picks s, t1, . . . , t` ∈ Zq uniformly at random, calculates

T = hs
∏`
i=1 g

ti
i , and sends T to V .

(2) Challenge phase: The verifier V picks c ∈ Zq uniformly at random and sends c to P .
(3) Response phase: The prover P sets z0 := cρ+ s and zi := cµi + ti for 1 ≤ i ≤ `, then sends
{zi}0≤i≤` to V .

(4) The verifier V accepts if hz0
∏`
i=1 g

zi
i = TAc.

More generally, we can call this type of zero-knowledge proof of knowledge a Sigma (Σ-) protocol.
Similar to the Schnorr proof these more general protocols consist of three rounds: a commitment
phase (1), a challenge phase (2), and a response phase (3).

We can easily make the Schnorr protocol a non-interactive zero knowledge proof of knowledge by
applying Fiat-Shamir; that is, we choose a cryptographic hash function H and replace the verifier’s
input by c := H(T). The Fiat-Shamir transform is a standard tool that transforms an interactive
Σ-protocol into a non-interactive one [FS87]. The basic idea is to use a cryptographic hash function
to hash the commitment from the first phase and then use this hash output as the verifier’s challenge.
By modeling the hash function as a random oracle, we can prove the soundness and zero-knowledge
property of the non-interactive protocol in the Random Oracle Model. We remark that this is a weak
form for Fiat-Shamir: if the adversary has the freedom to choose the statement A, this proof system
is no longer sound [BPW12]. In the strong form of Fiat-Shamir, we include both the statement
and the commitment as inputs to the hash function, i.e., c := H(A, T); this is necessary in certain
applications.

2.1.3. Signatures.

Definition 7 (Signature scheme). A signature scheme ΠSig consists of the following algorithms:

– Setup(1λ), which takes as input a security parameter λ and generates the public parameters
pp for the scheme, which implicitly define a finite message space X , a finite keypair space
K, and a finite signature space Y.

– KeyGen(pp) is a probabilistic algorithm that takes the public parameters pp as input and
outputs a keypair (pk , sk) ∈ K, where pk is a public key and sk is a corresponding secret
key.

– Sign(pp, sk ,m) is a (possibly probabilistic) algorithm that takes as input a secret key sk ∈ K
and message m ∈ X and outputs a signature σ ∈ Y.

– Verify(pp, pk ,m, σ) is a deterministic algorithm that takes as input a public key pk , a
message m, and a signature σ and outputs either true or false. For every possible (pk , sk)
output by KeyGen and every valid message m, this algorithm must satisfy

Verify(pp, pk ,m,Sign(sk ,m)) = true.

For ease of notation, we sometimes omit pp in the description of inputs to Sign and Verify. To
initialize the system, run pp← Setup(1λ). A signer P generates keys (pk , sk)← KeyGen(pp). To sign

12

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

a message m ∈ X , the signer P computes σ ← (Sign(pp, sk ,m). Anyone may verify P ’s signature σ
on a message m by running Verify(pp, pk ,m, σ).

Definition 8 (Blind signatures). A blind signature scheme ΠBlindSig consists of the following
algorithms:

– Setup(1λ), which takes as input a security parameter λ and generates the public parameters
pp for the scheme, which implicitly define a finite message space X , a blinded message space
X ′, a finite keypair space K, a finite signature space Y, and a blinded signature space Y ′,
and a randomness space R.

– KeyGen(pp) is a probabilistic algorithm that takes the public parameters pp as input and
outputs a keypair (pk , sk) ∈ K, where pk is a public key and sk is a corresponding secret
key.

– Blind(pp,m, t) takes as input a message m ∈ X and blinding factor t ∈ R and outputs a
blinded message m′ ∈ X ′.

– Sign(pp, sk ,m′) is a (possibly probabilistic) algorithm that takes as input a secret key
sk ∈ K and a blinded message m′ ∈ X ′ and outputs a blinded signature σ′ ∈ Y ′.

– Unblind(pp, σ′, t) takes as input a blinded signature σ′ ∈ Y ′ and a blinding factor t ∈ R and
outputs an unblinded signature σ ∈ Y.

– Verify(pp, pk ,m, σ) is a deterministic algorithm takes as input a public key pk , a message
m, and a signature σ and outputs either true or false.

For ease of notation, we sometimes omit pp in the description of inputs. To initialize the system,
run pp ← Setup(1λ). A signer S generates keys (pk , sk) ← KeyGen(pp). A party P can request

a blind signature on a message m ∈ X by choosing t
$←− R and computing m′ ← Blind(pp,m, t)

and sending m′ to the signer S. To sign the blinded message m′ ∈ X ′, the signer S computes
σ′ ← (Sign(pp, sk ,m′) and sends σ′ to the requesting party P . To obtain an unblinded signature,
party P computes σ ← Unblind(pp, σ′, t). Anyone may verify S’s signature σ on a message m by
running Verify(pp, pk ,m, σ).

A blind signature scheme ΠBlindSig should satisfy the standard properties of a signature scheme
and the following properties:

(1) Correctness: For every possible (pk , sk) output by KeyGen and every valid message m,
ΠBlindSig must satisfy

Verify(pp, pk ,m,Unblind(pp,Sign(pp, sk ,Blind(pp,m, t)), t)) = true.

(2) Blindness: For all m ∈ X , m′ ∈ X ′, we have Pr[m | m′] = Pr[m].

We sometimes also desire blind signatures schemes to satisfy randomizability. In this case, given
a signature σ ∈ Y on a message m, we may produce a valid signature σ′ 6= σ on the same message m,
such that Pr[σ | σ′] = Pr[σ].

2.1.4. Revocation lock schemes.

Definition 9 (Revocation Lock Scheme). We define a revocation lock scheme, ΠRlock, as a tuple
(Setup,KeyGen,Verify), where

– Setup(1λ) takes a security parameter 1λ as input and outputs the public parameters pp for
the scheme, which implicitly define a finite revocation lock space, RL, and a finite revocation
secret space, RS.

– KeyGen(pp) is a probabilistic algorithm that takes public parameters pp as input and
outputs a revocation lock pair (rl , rs) ∈ RL×RS, where rl is a revocation lock and rs is a
revocation secret.

13

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

– Verify(rl , rs) is a deterministic algorithm that takes a revocation lock rl ∈ RL and revocation
secret rs ∈ RS as input and outputs a boolean b ∈ {false, true}. For every λ and every pair
(rl , rs)← KeyGen(1λ), we require Verify(rl , rs) = true.

Security: For all p.p.t. adversaries A, there exists a negligible function negl such that

Pr[Verify(rl , rs) = true | (rl , ·)← Gen(1λ), rs ← A(rl)] < negl(λ).

Revocation locks are a formalization of the hash lock construction, commonly used in blockchain
applications. This implementation instantiates revocation locks as standard hash locks, relying on the
collision resistance of some standard cryptographic hash function H. We use H to create revocation
locks by defining ΠRlock.KeyGen(1λ) = (H(r), r). Similarly, ΠRlock.Verify(rl , rs) recomputes the hash
on rs and compares it to the given rl .

2.2. Pointcheval Sanders signatures

zkChannels uses a randomizable signature scheme with efficient zero knowledge protocols, which
we denote by ΠZKSig, which features the following additional properties:

(1) an efficient blind signature protocol for a user to obtain a signature on the messages in a
commitment without the signer learning anything about the underlying messages;

(2) an efficient protocol for proving knowledge of a signature; and
(3) signatures should be randomizable, i.e., given a signature σ on a message m, it should be

possibly to construct a new signature σ′ for m that is information-theoretically unlinkable
to σ in the absence of m.

Examples of ZKSig schemes are bilinear CL signatures, due to Camenisch and Lysyanskaya
(CL) [CL04] and Pointcheval Sanders (PS) signatures [PS16, PS18]. In both of these schemes, the
commitment scheme used is a Pedersen commitment with generators determined by the signer’s
public key. To avoid confusion with general Pedersen commitments (in which generators should
be chosen such that no party knows discrete logarithm relationships among them) we will refer
to this type of commitment as a ΠZKSig-commitment. Since PS signatures are more efficient and
take full advantage of the type 3 pairing setting, we instantiate zkChannels using PS rather than
CL signatures. We use the original version of PS signatures [PS16] because we require all three of
the above properties, whereas the modified approach [PS18] sacrifices either full randomizability
or the use of efficient protocols for proving knowledge of a signature.1These signatures require the
following computational assumption:

Definition 10 (PS Assumption). Let G1, G2, and GT be cyclic groups of order qthat admit

a type 3 pairing e : G1 × G2 → GT , and set generators g
$←− G∗1 and g̃

$←− G∗2. For x, y ∈ Z∗q and

an element m ∈ Zq, define a PS pair on the tuple (x, y,m) as a pair (h, hx+my), where h ∈ G∗1.

For randomly generated x, y
$←− Z∗q , define an oracle O(x,y) that takes as input an element m ∈ Zq,

chooses h
$←− G∗1, and outputs the PS pair (h, hx+ym). Given (g, gy, g̃, g̃x, g̃y) and unlimited access to

the oracle O(x,y), no adversary can efficiently generate a PS pair on a tuple (x, y,m) for any m not
previously input to O(x,y).

We discuss the efficient protocols and our modifications in more detail in Section 12, but we
present the basic signature scheme (without efficient protocols) here first.

1That is, the modified approach [PS18] requires the signer choose an additional, random element from the message

space to be included as part of the signature. A consequence of this is that the signature is no longer randomizable.
Randomizability may be recovered by instead setting this additional element deterministically using a hash of the
message m for an appropriate hash function H. However, if both blind signatures and proofs of knowledge of a signature
need to be supported, the corresponding PoKs must prove that the pair (m,H(m)) is well-formed. This renders the
“efficient protocols” inefficient.

14

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

Definition 11 (Multi-message PS signatures (ΠmultiPS)). The basic multi-message signature
scheme, which we denote by ΠmultiPS, is as follows.

– Setup(1λ): On security parameter λ, this algorithm outputs pp← (q,G1, G2, GT , e), where
G1, G2, GT are cyclic groups of order q that admit a type 3 pairing e : G1 ×G2 → GT .

– KeyGen(pp): This algorithm selects g̃
$←− G∗2, and (x, y1, . . . , y`)

$←− (Z∗q)`+1, and then

computes (X̃, Ỹ1, . . . , Ỹ`) ← (g̃x, g̃y1 , . . . , g̃y`), and sets sk = (x, y1, . . . , y`) and pk =

(g̃, X̃, Ỹ1, . . . , Ỹ`). Note that the public key consists of elements of G2 and the secret
key consists of elements of Z∗q .

– Sign(sk ,m1, . . . ,m`): For a message tuple (m1, . . . ,m`) ∈ Z`q, this algorithm selects an

element h
$←− G∗1 and outputs a signature σ ← (h, hx+

∑`
i=1 yimi). Note that the message

tuple consists of elements in Zq and the signature consists of a pair of elements in G1.

– Verify(pk , (m1, . . . ,m`), σ): This algorithm parses σ as (σ1, σ2) and checks that σ1 6= 1G1

and e(σ1, X̃ ·
∏`
i=1 Ỹ

mi
i) = e(σ2, g̃). It outputs true is both checks pass and false otherwise.

PS signatures are randomizable. That is, a party can create a signature σ′ that is a perfectly

unlinkable to σ by choosing r
$←− Zq and setting σ′ = (σr1, σ

r
2). The new signature σ′ will verify on

the same underlying message.
We may achieve blind signatures using Pedersen-like commitments:

Definition 12 (Blind PS signatures (ΠPS)). We present the PS scheme, which we denote by
ΠPS, that allows blind signatures with efficient protocols here.

– Setup(1λ): On security parameter λ, this algorithm outputs pp← (q,G1, G2, GT , e), where
G1, G2, GT are cyclic groups of order q that admit a type 3 pairing e.

– KeyGen(pp): This algorithm selects g
$←− G∗1, g̃

$←− G∗2, and skmultiPS = (x, y1, . . . , y`)
$←−

(Z∗q)`+1. The algorithm then computes (X,Y1, . . . , Y`)← (gx, gy1 , . . . , gy`) and (X̃, Ỹ1, . . . , Ỹ`)←
(g̃x, g̃y1 , . . . , g̃y`), and sets sk = X and pk = (g, Y1, . . . , Y`, g̃, X̃, Ỹ1, . . . , Ỹ`). The public
key pk may be thought of as consisting of a basic multi-message PS public key, namely
pkmulti = (g̃, X̃, Ỹ1, . . . , Ỹ`), and auxiliary information, namely pk aug = (g, Y1, . . . , Y`).

– BlindSign(m1,m2 . . . ,m`): This protocol allows a party to obtain a signature on a message
tuple (m1, . . . ,m`) ∈ Z`q without revealing any information about the message tuple to the
signer. The party receives a blinded signature σ′, from which they may extract a regular
(unblinded) signature σ.

(1) On input a message tuple (m1,m2, . . . ,m`), the party selects t
$←− Zq and computes

the commitment C ← gt
∏`
i=1 Y

mi
i . The party then sends C to the signer, together

with a proof of knowledge of the opening of C (which may be interactive). Note that
C is a Pedersen commitment defined over the generators in pk aug.

(2) If the signer accepts the proof of knowledge, they select u
$←− Zq, compute σ′ ←

(gu, (XC)u), and send σ′ to the requesting party.
(3) The requesting party outputs (σ′, t).

– Unblind(σ′, t): This algorithm takes as input a blinded signature σ′ and blinding factor t,

parses the signature σ′ as (σ′1, σ
′
2), and computes σ ← (σ′1, σ

′
2/σ
′
1
t
).

– Verify(pk , (m1,m2, . . . ,m`), σ): This algorithm takes as input an unblinded signature, σ,

parses σ as (σ1, σ2), and checks that σ1 6= 1G1 and e(σ1, X̃ ·
∏`
i=1 Ỹ

mi
i) = e(σ2, g̃). It

outputs true is both checks pass and false otherwise. That is, this algorithm computes
ΠmultiPS.Verify(pkmulti, (m1,m2, . . . ,m`), σ) and outputs the result.

15

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

To initialize the system, run pp← Setup(1λ). A signer S generates keys (pk , sk)← KeyGen(pp).
A party P can request a blind signature on a message (m1,m2, . . . ,m`) by running the interac-
tive protocol BlindSign(m1,m2, . . . ,m`) with signer S and obtaining a pair (σ′, t). Party P then
unblinds σ′ by computing σ ← Unblind(pp, σ′, t). Anyone may verify S’s signature σ on a message
(m1,m2, . . . ,m`) by running Verify(pp, pk , (m1,m2, . . . ,m`), σ).

Blind PS signatures also support the following procedures, which are useful building blocks for
efficient protocols:

– RandomizeSig(σ): This probabilistic algorithm takes as input a signature σ = (σ1, σ2) ∈ Y,

chooses r
$←− Z∗q and outputs (σr1, σ

r
2).

– Sign(skmultiPS,m1, . . . ,m`) = ΠmultiPS.Sign(skmultiPS,m1, . . . ,m`) for skmultiPS = (x, y1, . . . , y`).

– BlindSig(σ, t): This algorithm takes as input a signature σ and a blinding factor t and
outputs a blinded signature σ′ = (σ1, σ2 · σt1).

2.2.1. Proving knowledge of a signature and variants. Let pk = (g̃, X̃, Ỹ1, . . . , Ỹ`) be a
public key for the basic multi-message signature scheme, and let σ = (σ1, σ2) be a valid signature on
(m1, . . . ,m`) under pk . The user may prove knowledge of a signature for the verifier by doing the
following:

(1) Blind and randomize σ by selecting r
$←− Z∗q and t

$←− Zq, and computing σ′ = (σ′1, σ
′
2) =

(σr1, (σ2 · σt1)r).
(2) Send σ′ together with a zero-knowledge proof of knowledge π to the verifier, where

π = PK{(m1, . . . ,m`, t) : e(σ′1, X̃) ·
∏̀
i=1

e(σ′1, Ỹi)
mi · e(σ′1, g̃)t = e(σ′2, g̃)}.

Note that this proof is a standard proof of knowledge of an opening of the commitment
A = e(σ′2, g̃)/e(σ′1, X̃) ∈ GT for generators h0 = e(σ′1, g̃) and {hi = e(σ′1, Ỹi)}{1≤i≤`}. That

is, π proves knowledge of an opening (m1, . . . ,m`; t) such that A = ht0
∏j
i=1 h

mi
i .

(3) The verifier should should check that σ′1 6= 1G1 and that π verifies.

We can modify the above protocol to prove additional properties about the underlying signed
message (m1, . . . ,m`). For example, assume we have additional generators h1, . . . , h`+1 ∈ G chosen
uniformly at random, where G is a group of prime order q. We can show that a fresh commitment
M (which has not previously been seen by the signer) commits to the same underlying signed
message. That is, we can choose t′ ∈ Zq uniformly at random, form the Pedersen commitment

M = ht
′

`+1

∏`
i=1 h

mi
i , and modify the above protocol as follows:

π = PK{(m1, . . . ,m`, t, t
′) : e(σ′1, X̃) ·

∏̀
i=1

e(σ′1, Ỹi)
mi · e(σ′1, g̃)t = e(σ′2, g̃)

∧M = ht
′

`+1

∏̀
i=1

hmi
i }.

In the above, we prove knowledge of a valid signature on the tuple of messages (m1, . . . ,m`)
underlying the commitment M . This can be accomplished using the generic linear protocol. We can
include additional constraints on the underlying message elements, such as range proofs, or even
partially reveal the underlying message. We can also form a commitment M ′ and prove that M ′

has underlying secrets with more complicated relationships to the underlying messages, e.g., a linear
relationship.

When we wish to give a high-level description of an application of this type of zero knowledge
proof for a protocol ΠZKSig (e.g., we wish to avoid including the public key and pairing details), we
will sometimes use the following notation for the proof of knowledge π, where (m1, . . . ,m`) is the

16

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

underlying message, t is the blinding factor for the signature σ′, and t′ is the blinding factor for the
commitment M :

π = PK{(m1, . . . ,m`, t, t
′) : BlindVerify(pk , (m1, . . . ,m`, t), σ

′) = true

∧M = com(m1, . . . ,m`; t
′)}.

We emphasize that π alone is insufficient for the verifier to be convinced. The verifier needs to
perform any additional signature checks required by the underlying scheme ΠZKSig. In the case of PS
signatures, the verifier should check that σ′1 6= 1G1

.

2.2.2. Range proofs. In this section, we give an overview of the range proof technique from
Camenisch, Chaabouni, and shelat [CCs08]. The original paper makes use of Boneh-Boyen signa-
tures [BB04]; we use (single-message) Pointcheval-Sanders signatures [PS16], described in Section 11
instead. Fix public parameters pp ← (q,G1, G2, GT , e) as in Section 11. We will also make use of
the (single-message) Pedersen commitment scheme ΠCom over G2 with fixed generators g, h ∈ G2.

Let A be a commitment to the value µ; that is, A = com(µ; ρ) = gµhρ for some ρ chosen
uniformly at random from Zq. We are interested in proving that µ ∈ [a, b], where a, b ∈ N, using a
zero knowledge proof of knowledge. This corresponds to the following statement:

PK{(µ, ρ) : A← Commit(µ; ρ) ∧ µ ∈ [a, b]}.
The range proof technique given by Camenisch, Chaabouni, and shelat [CCs08] builds on their

set membership protocol, so we provide a brief sketch here. In order to prove that a given, committed
element µ belongs to a set Φ, the prover first needs the verifier to send a signature of each element of
Φ. The prover can then blind the signature corresponding to µ and use this blind signature to prove
in zero knowledge that they possess a signature on the committed element.

The basic range technique treats intervals of the form [0, u`). In order to show µ ∈ [0, u`), we
first write µ in u-ary notation and then commit to the u-ary representation of µ and prove (in zero
knowledge) that each of these digits are members of the set [0, u − 1], as per the set membership
technique above. If we want to show that the value µ lies within an arbitrary interval [a, b] instead,
we choose u, ` such that u`−1 < b < u` and then prove both µ− b+ u` ∈ [0, u`) and µ− a ∈ [0, u`).

The scheme is as follows:
Common Input:

– PS single-message basic signature public parameters pp← (q,G1, G2, GT , e)
2;

– Pedersen commitment generators g, h ∈ G2;3

– Range parameters u, ` ∈ N;

– Pedersen commitment A.

Prover Input: µ, ρ ∈ Zq such that A = gµhρ, where µ ∈ [0, u`) and ρ ∈ Zq is chosen uniformly at
random.

Protocol:

(1) First, the verifier chooses a PS signing keypair (sk , pk). That is, the verifier selects x, y
$←− Zq

and g̃
$←− G∗2, computes (X̃, Ỹ)← (g̃x, g̃y), and then sets sk = (x, y) and pk = (g̃, X̃, Ỹ).

(2) Next, the verifier signs each integer in [0, u− 1]. That is, for each integer i ∈ [0, u− 1], the

verifier selects hi
$←− G∗1 and computes σi = (σi,1, σi,2) = (hi, h

x+y·i
i). Finally, the verifier

sends pk together with the signatures {σi}0≤i≤u−1 to the prover.
(3) The prover first verifies that pk is a well-formed public key and that the received signatures

{σi}0≤i≤u−1 are valid under pk . That is, g̃, X̃, and Ỹ should all be non-identity elements
in G2.

2The prover/verifier should be confident that these parameters are valid, i.e., q is prime, the groups G1, G2, and

GT are of prime order q and admit a type 3 pairing e.
3These generators should be generated such that no discrete logarithm relationships are known.

17

Ch 2: Building Blocks Draft—not for distribution. Draft—not for distribution.

(4) The prover writes µ in base u. That is, they determine integer coefficients µj ∈ [0, u− 1]

for 0 ≤ j ≤ `− 1 such that µ =
∑`−1
j=0 µju

j .

(5) The prover and verifier perform the following proof of knowledge:

PK{(ρ, {µj , σµj
}0≤j≤`−1) : A = hρ

`−1∏
j=0

(gu
j

)µj ∧ {ΠPS.Verify(pk , µj , σµj
) = true}0≤j≤`−1}.

This proof contains a proof of knowledge of the opening µ of the commitment A written in
base u with coefficients µj , as well as a proof of knowledge of a signature on each of the
coefficients µj .

18

CHAPTER 3

Off-Network and On-Network Subprotocols

zkChannels is a composition of an off-network channel protocol, which we denote by ΠzkAbacus,
and an on-network arbitration protocol, which we denote by ΠzkEscrowAgent. In this chapter, we present
each subprotocol and then define the composition in Chapter 4. For each, we fix a merchant M and
a customer C, and then define how to either establish an off-network channel, or open and close an
on-network escrow account, respectively.

3.1. Assumptions and Notation

We assume the customer has a way of obtaining and validating a merchant’s zkChannels public
keys.

We write interactive procedures using the notation Alg(in, (in)C , (in)M), where in denotes
shared inputs, i.e., inputs common to both parties, (in)C denotes customer-specific inputs, and (in)M
denotes merchant-specific inputs. Party-specific inputs are assumed to be secret by default. We use
“customer outputs” to denote information the customer receives as a result of the protocol interaction
and similarly, “merchant outputs” to denote information the merchant receives as a result of the
protocol interaction. Protocol outputs are party-specific and are not shared knowledge between the
customer and merchant. We use the notation (out)P ← Alg() to denote that party P receives output
out from the algorithm Alg.

3.2. Sessions

We assume the customer and merchant interact over a communication channel, called a session,
for interactive protocols. Sessions satisfy the following properties:

– Each session satisfies confidentiality and integrity.

– Merchants are identifiable (perhaps pseudonymously) and authenticated by the customer
across all sessions, but the merchant identity/pseudonym is not explicitly revealed to third
parties.

– Customer identities/pseudonyms are not explicitly revealed to third parties. The protocols
ΠzkAbacus and ΠzkEscrowAgent (and the composed protocol ΠzkChannels in Chapter 4) are agnostic
as to whether the merchant knows a customer’s real-world identity. No customer-specific
information that might be linked back to either ΠzkAbacus.Initialize or ΠzkAbacus.Activate is
revealed during a ΠzkAbacus.Pay session, and no information that might be linked back to
a ΠzkAbacus.Pay session is revealed during ΠzkAbacus.Close, so long as the customer closes
honestly.

We assume the customer and the merchant interact with the arbiter over a communication
channel that satisfies confidentiality. The protocol ΠzkEscrowAgent is agnostic as to whether the arbiter
knows participants’ real-world identities or merely pseudonyms. In practice, the merchant uses the
same public keys for zkChannel escrow accounts, so the merchant’s escrow accounts on the arbiter
ledger are linkable.

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

3.3. Off-network Channel Protocol ΠzkAbacus

The protocol ΠzkAbacus is an interactive off-network private payments channel protocol. This
is a two-party protocol that provides privacy and correctness of channel state updates and allows
the merchant to verify that a customer-provided state is indeed the most recent state for the given
channel.

3.3.1. Building Blocks. We use the following building blocks to construct ΠzkAbacus:

• A signing primitive ΠZKSig that is a zero-knowledge signature scheme admitting efficient
protocols and randomizability of signatures. Further, ΠZKSig must be defined for tuples of
messages. Let X be the underlying message space, K be the key space, Y be the signature
space, and R be the randomness space for this primitive. Our use of ΠZKSig has the
additional requirement that X is a group, which we write additively. This signature scheme
defines:

– A commitment scheme Πcom with message space X , commitment space Y, and ran-
domness space R.

– A signature protocol with the standard signature methods, for message space X ,
signature space Y, and randomness space R.

– A blind signature protocol with the standard blind signature methods, for message
space X , blinded message space Y, blinded signature space Y, and randomness space
R.

– A method to randomize signatures, RandomizeSig : Y → Y.
– A NI-ZKPoK protocol for proving the conjunction of the following types of statements

with respect to elements from X :
∗ Proving knowledge of openings and partial openings of commitments.
∗ Proving knowledge of a signature.
∗ Proving equality and linear relationships of committed values.
∗ Proving that a committed value lies in a given range.

• A cryptographic, collision-resistant hash function H : {0, 1}∗ → X .
• A revocation lock scheme ΠRlock defined for revocation lock space X .
• We treat monetary values as integers, i.e., we have an allowed integer range (−a, a) for

positive a ∈ Z. We need a method to encode these allowed monetary values in our
message space X and a method to decode elements in X as monetary values; these methods
should preserve addition in Z and and the group operation in X . We encode values via a
homomorphism µ : (−a, a)→ X and decode values via a homomorphism µ′ : X → Z. For
readability, we do not surface the usage of µ and µ′ in the following high-level description.
The implementation should specify how to handle monetary values.1

3.3.2. Procedures. The protocol ΠzkAbacus uses the following procedures:

– Setup(1λ): This algorithm takes as input a security parameter 1λ and outputs pp, which
consists of the public parameters for ΠZKSig, H, and ΠRlock.

– Init(pp): This merchant-run algorithm takes as input public parameters pp and initializes
the following databases to ∅:
• An activation database, which we denote by S0. This database contains pairs of the

form (x, y) ∈ (X ,Y). This can be queried with a value x to retrieve the (unique) entry
(x, y), if such an entry exists.2

• A nonce database, which we denote by S1. This database contains elements of the
form n ∈ X , where semantically n is a nonce.

1In our implementation, we set allowed monetary values to be (−263, 263) and use Pointcheval Sanders signatures
on BLS12-381, so here X is the field Zq for the pairing groups G1, G2, and GT of prime order q.

2Semantically x acts as a channel identifier and y is a verified commitment to the initial state for the channel with
identifier x. The channel identifier must be unique.

20

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

• A revocation lock database, which we denote by S2. This database contains pairs of
the form (x, y) ∈ (RL,RS), where RL = X and RS are the revocation lock and
revocation secret space defined by ΠRlock, respectively.

The algorithm then runs (pk , sk)← ΠZKSig.KeyGen, and outputs the tuple (S0, S1, S2, (pk , sk))
(to the merchant).

– Initialize(pp, pk , cid , BC0 , B
M
0 , (S0, sk)M): This interactive procedure expects, as shared

input, a tuple (pp, pk , cid , BC0 , B
M
0), where pp← Setup(1λ) are public parameters, the key

pk is a merchant public key for ΠZKSig and the values cid , BC0 , B
M
0 ∈ X are initial channel

parameters. Specifically, cid is a unique channel identifier, BC0 is the customer’s initial
channel balance, and BM0 is the merchant’s initial channel balance.3 The private merchant
inputs are an activation database S0 and a secret key sk corresponding to pk . There are no
private customer inputs. In the following, the element close ∈ X is a fixed flag defined by
the implementation.

The protocol proceeds as follows:
(1) The customer does the following:

(a) Chooses a nonce, n0
$←− X\{close}, and generates a revocation keypair, (rl0, rs0)←

ΠRlock.KeyGen().

(b) Chooses blinding factor τ
$←− R and forms A′′ = comZKSig(s0; τ), where s0 =

(cid ,n0, rl0, B
C
0 , B

M
0) is the initial state.4

(c) Chooses a blinding factor τ
$←− R and forms A′ = comZKSig(s̄0; τ), where s̄0 =

(cid , close, rl0, B
C
0 , B

M
0) is the customer’s initial closing state.5

(d) Generates a proof

π = PK{(n0, rl0, τ, τ) : A′′ = comZKSig(cid ,n0, rl0, B
C
0 , B

M
0 ; τ)

∧A′ = comZKSig(cid , close, rl0, B
C
0 , B

M
0 ; τ)}.

(e) Send A′′, A′, and π to the merchant.
(2) The merchant does the following:

(a) Checks that (cid , ·) /∈ S0; and if this check fails, aborts and output ⊥.
(b) Checks that A′′, A′,∈ Y and that π verifies with respect to A′, A′′, cid , close,

BC0 , and BM0 ; and if this check fails, aborts and outputs ⊥.
(c) Otherwise, computes and sends

σ̂0 = ΠZKSig.BlindSign(sk , A′)

to the customer.
(d) Sets S′0 = S0 ∪ (cid , A′′) and outputs S′0.

(3) The customer checks that σ̂0 ∈ Y, computes

σ0 = ΠZKSig.Unblind(σ̂0, τ),

and checks that

ΠZKSig.Verify(pk , s̄0, σ0) = true.

If this check fails, they abort and output (⊥,⊥,⊥,⊥,⊥). Otherwise, they output
(s̄0, s0, rs0, τ, σ0).
See also Figure 3.1.

3The values of these inputs are agreed on outside of the ΠzkAbacus protocol.
4A customer state is used for tracking current channel balances and, in combination with a merchant signature on

the state, making payments.
5Each customer state is associated with a closing state. Closing states are used for closing channels, in combination

with a merchant signature on the closing state. Domain separation between states and closing states is enforced using
the special close flag close.

21

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

– Activate(pp, pk , cid , (s0, τ)C , (S0, sk)M). This procedure expects a pair (pk , cid) as shared
input, where pp← Setup(1λ) are public parameters and the key pk is a merchant public
key for ΠZKSig. The private merchant inputs are an activation database S0 and a secret key
sk , where sk is the secret key corresponding to pk . The private customer inputs are a state
s0 and a corresponding blinding factor τ. The protocol proceeds as follows:
(1) The merchant checks for an entry (cid , A′′) ∈ S0. If no such entry exists, they abort

and output ⊥. Otherwise, they compute and send the following to the customer:
a payment tag, namely p̃t0 = ΠZKSig.BlindSign(sk , A′′). The merchant then outputs a
success bit, which we denote by success.

(2) The customer checks that p̂t0 ∈ Y, computes

pt0 = ΠZKSig.Unblind(p̂t0, τ),

and checks that

ΠZKSig.Verify(pk , s̄0, σ0) = true.

If this check fails, they abort and output ⊥. Otherwise, they output pt0.

– Pay(pp, pk , ε, (si, pt i)C , (S1, S2, sk)M). This interactive protocol expects public parameters
pp ← Setup(1λ), a merchant public key, pk , for ΠZKSig, and a payment amount ε ∈ Z as
shared input. This protocol allows a customer to make a payment to the merchant on
a state si = (cid ,ni, rl i, B

C
i , B

M
i) using payment tag pt i. The merchant inputs are two

databases, S1 and S2, and a secret key sk corresponding to pk .6

The customer output from this protocol is a tuple containing:
(1) A new state si+1 = (cid ,ni+1, rl i+1, B

C
i − ε, BMi + ε) and associated closing state

s̄i+1 = (cid , close, rl i+1, B
C
i − ε, BMi + ε).

(2) An associated payment tag, which we denote by pt i+1, that satisfies

ΠZKSig.Verify(pk , si+1, pt i+1) = true;

(3) A closing authorization signature, which we denote by σi+1, that satisfies

ΠZKSig.Verify(pk , s̄i+1, σi+1) = true;

(4) A payment status indicator pay-statusC .7

The merchant output from this protocol is a tuple (S′1, S
′
2, pay-statusM), where S′1 =

S1 ∪ {ni} and S′2 = S2 ∪ {(rl i, rsi)} are updated databases, and pay-statusM is a payment
status indicator.8

We present the details of Pay in Figure 3.2.

– Close(pp, pk , cid , (s̄, σ)C , (S2)M). This interactive procedure expects public parameters
pp ← Setup(1λ), a merchant public key pk from ΠZKSig, and a channel identifier cid as
shared input. Private customer inputs are a closing state s̄ = (cid , close, rl , BC , BM) and a
ΠZKSig-signature σ. Private merchant input is a revocation lock database S2. The protocol
proceeds as follows:
(1) The customer computes a randomized signature, namely

σ′ = ΠZKSig.RandomizeSig(σ),

and sends the signature σ′, together with s̄, to the merchant.

6The databases S1 and S2 kept by the merchant contain state revocation information. The database S1 contains

nonces and the database S2 contains revocation pairs, i.e., revocation locks together with their corresponding revocation
secrets. We stress that in practice, the merchant does not need to track that a given nonce and revocation pair are

contained in the same state.
7The counter pay-statusC is used to specify customer closing logic.
8In practice, the counter pay-statusM may be used by the merchant to make decisions with respect to the context

of the given payment. In particular, success or failure of the payment from the merchant’s perspective may depend in
a non-trivial way on the value of pay-statusM .

22

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

(2) If ΠZKSig.Verify(pk , s̄, σ′) = true and (rl , ·) /∈ S2, the merchant adds (rl , ·) to S2 and
outputs (cid , rl ,⊥, true). Otherwise, the merchant outputs (⊥,⊥,⊥,⊥) if the signature
check fails or else (cid , rl , rs , false), if the signature check passes but (rl , rs) ∈ S2.

3.3.3. Protocol Description. To initialize system parameters, run pp← Setup(1λ). A mer-
chant M then runs (S0, S1, S2, (pk , sk))← Init(pp). To establish a channel together, a customer and
the merchant M agree (outside of the protocol) on initial channel parameters consisting of a unique
channel identifier cid and initial customer and merchant balances, which we denote by BC0 and BM0 ,
respectively.9

The parties each initialize a status for the channel by setting status = uninitialized. They
then run Initialize(pp, pk , cid , BC0 , B

M
0 , (S0, sk)M). If this procedure runs successfully they each set

status = initialized.
The parties then run Activate(pp, pk , cid , (s0, τ)C , (S0, sk)M). If this procedure completes suc-

cessfully, they each set status = ready. These two sessions, Initialize and Activate, must be linked;
that is, the merchant must be assured that they are communicating with the same customer in both
sessions and that the entry (cid , A′′) matches that from the linked Initialize session.

If the Activate session is successful, the customer holds a payment tag, namely pt0, on an initial
state s0 = (cid ,n0, rl0, B

C
0 , B

M
0), and a closing authorization tag, namely σ′0, on the corresponding

closing state s̄0 = (cid , close, rl0, B
C
0 , B

M
0).

The customer can then make a sequence of payments (pi)i≥0 to the merchant by initiating the
interactive protocol Pay(pp, pk , εi, (si, pt i)C , (S1, S2, sk)M (see Figure 3.2) for each payment pi, so
long as the channel status is ready. For a given payment pi, the customer extracts the resulting
pay-statusC from the output of Pay and does the following:

(1) If pay-statusC = revocation-incomplete or pay-statusC = revocation-complete, the customer
sets status = frozen.

(2) If pay-statusC = state-updated, then the customer may continue to make additional pay-
ments on the channel.

When the customer wishes to close the channel, they initiate Close(pp, pk , cid , (s̄, σ)C , (S2)M) on
the most recent closing state s̄ and corresponding closing authorization signature σ. The customer
should then mark the channel as closed. Similarly, if the merchant knows how to contact the customer,
they can request the customer participate in a Close session. The merchant should mark the channel as
closed if their output is (cid , rl ,⊥, true) and they may flag the channel (and corresponding customer,
if appropriate) as corrupted if their output is (cid , rl , rs , false). Outputs of (⊥,⊥,⊥,⊥) are ignored,
unless the merchant knows the identity of the customer and the Close session is authenticated for
both parties, in which case the merchant may flag the customer as corrupt.

3.3.4. Discussion. The protocol ΠzkAbacus is the component of zkChannels that allows channel
state to be kept and updated privately by the customer. As such, this protocol is primarily a
bookkeeping protocol that provides correctness and privacy of state updates, and allows the two parties
to cooperatively close the channel. The protocol as sketched is a two-party protocol that does not
directly handle adversarial closes, but we do provide the merchant with some recourse in the event
the customer sends an outdated state to the merchant in Close():

(1) The merchant knows which channel the customer wishes to close.
(2) The merchant knows whether or not the provided state is outdated.
(3) If the state is outdated, the merchant knows the corresponding revocation pair.
(4) Revocation pairs are verifiable by any party, not just protocol participants.

This construction provides the foundation on which we may extend this protocol to define zkChannels,
which includes arbitration for the disbursement of escrowed funds backing the ΠzkAbacus channel.

However, ΠzkAbacus channels themselves cannot be closed by the merchant and require honest
participation by the customer to close. If the customer sends an outdated state to close, the channel

9All channel parameters should be elements of X .

23

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

Customer() ΠzkAbacus.Initialize(pk , cid , BC0 , B
M
0) Merchant(S0, sk)

. .

(1) Choose a nonce n0
$←− X \ {close} and generate a revo-

cation keypair (rl0, rs0)← ΠRlock.Gen(). Set the initial
closing state as

s̄0 = (cid , close, rl0, B
C
0 , B

M
0)

and the initial state as

s0 = (cid ,n0, rl0, B
C
0 , B

M
0).

(2) Choose blinding factor τ
$←− R and form A′ =

comZKSig(s̄0; τ).

(3) Choose blinding factor τ
$←− R and form A′′ =

comZKSig(s0; τ).
(4) Generate the following proof π:

PK{(n0, rl0, τ, τ) : A′ = comZKSig(cid , close, rl0, B
C
0 , B

M
0 ; τ)

∧A′′ = comZKSig(cid ,n0, rl0, B
C
0 , B

M
0 ; τ)}.

(5) Send A′, A′′, and π.

A′, A′′, π−−−−−−−−−−−−−−−−−−−−−−−−−−−→

σ̃0←−−

(1) Check that (cid , ·) /∈ S0. If this check fails,
abort and output ⊥.

(2) Check that A′, A′′ ∈ Y and that π verifies with
respect to pk , A′, A′′, cid , close, BC0 , and BM0 .
If this check fails, abort, and output ⊥.

(3) Otherwise, compute and send

σ̃0 = ΠZKSig.BlindSign(sk , A′).

(4) Set S′0 = S0 ∪ (cid , A′′).

If σ̃0 ∈ Y, compute σ0 = ΠZKSig.Unblind(σ̃0, τ) and
check that ΠZKSig.Verify(pk , s̄0, σ0) = true.

. .
output: (s̄0, s0, rs0, τ, σ0) output: S′0

Figure 3.1. ΠzkAbacus.Initialize

remains open. This is because the merchant does not have enough information to determine (or
prove) the current channel state in the event of a malicious customer close, i.e., we do not provide a
mechanism for state reconciliation. We leave extensions of ΠzkAbacus that allow for state reconciliation
as future work.

3.3.5. Implementation details. The instantiation of the scheme ΠZKSig impacts the structure
of the zero knowledge proofs. If we use Pointcheval Sanders (ΠPS), we are working over the group
Zq; that is, the values committed to in a state as well as payment amounts will be interpreted as
values in Zq, so we must be careful how we encode positive and negative values and show (in zero
knowledge) that values are in the expected range when making payments.

In particular, during system setup, ΠzkAbacus.Setup(1λ) runs ΠPS.Setup(1λ), which outputs ppPS =
(q,G1, G2, GT , e), where G1, G2, and GT are cyclic groups of order q that admit the type 3 pairing
e.10 These parameters ppPS are then included in the public parameters pp for ΠzkAbacus.

10As a notational reminder, we use G∗1 = G1\{1G1
} and G∗2 = G2\{1G2

} to denote the set of non-identity elements
of G1 and G2, respectively.

24

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

Customer(si, pt i) ΠzkAbacus.Pay(ε, pk) Merchant(S1, S2, sk)

state: si = (cid ,ni, rl i, B
C
i , B

M
i)

. .

(1) Initialize pay-statusC to uninitialized. Generate a revocation keypair (rl i+1, rsi+1)←
ΠRlock.Gen() and a nonce ni+1

$←− X . Set the new state as

si+1 = (cid ,ni+1, rl i+1, B
C
i − ε, BM

i + ε)

and the new closing state as

s̄i+1 = (cid , close, rl i+1, B
C
i − ε, BM

i + ε).

(2) Prepare the following commitments:
(a) Choose commitment randomness ρi and form A = com(rl i; ρi).
(b) Choose blinding factor τ i+1, and form A′ = comZKSig(s̄i+1; τ i+1).
(c) Choose blinding factor τi+1, and form A′′ = comZKSig(si+1; τi+1).

(3) Generate the following proof π:

PK{(cid , BC
i , B

M
i , rl i,ni+1, rl i+1, τi+1, τ i+1, ρi, pt i) :

ΠZKSig.Verify(pk , (cid ,ni, rl i, B
C
i , B

M
i), pt i) = true

∧A = com(rl i; ρi)

∧A′ = comZKSig(cid , close, rl i+1, B
C
i − ε, BM

i + ε; τ i+1)

∧A′′ = comZKSig(cid ,ni+1, rl i+1, B
C
i − ε, BM

i + ε; τi+1)

∧ 0 ≤ (BC
i − ε) ∧ 0 ≤ (BM

i + ε)}.

(4) Send commitments, ni, and π. Set pay-statusC = revocation-incomplete.

ni, π, A, A′, A′′−−−−−−−−−−−−−−−−−−−−−−−−→

σ̂i+1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1) Initialize pay-statusM to uninitialized. Then:
(a) Check ni ∈ X and ni /∈ S1; and
(b) Check that π verifies with respect to ni, A, A′, A′′, ε,

and pk .
If either check fails, abort, and output (S1, S2, pay-statusM).

(2) Otherwise, compute and send

σ̂i+1 = ΠZKSig.BlindSign(sk , A′).

Set S′1 = S1∪{ni}, set pay-statusM = revocation-incomplete,
and continue.

(1) If σ̂i+1 ∈ Y, compute σi+1 = ΠZKSig.Unblind(σ̂i+1, τ i+1) and
check that ΠZKSig.Verify(pk , s̄i+1, σi+1) = true. If not, abort and
output (⊥,⊥,⊥, pay-statusC).

(2) Send rl i, rsi, and ρi, and set pay-statusC = revocation-complete.

rl i, rsi, ρi−−→

p̂t i+1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1) Verify the following:
(a) (rl i, ·) /∈ S2;
(b) Πcom.Decommit(A, rl i, ρi) = true; and
(c) rl i = H(rsi).

(2) If not all checks verify, abort and output (S′1, S2, pay-statusM).
(3) Otherwise, compute and send

p̂t i+1 = ΠZKSig.BlindSign(sk , A′′).

Set S′2 = S2 ∪ {(rl i, rsi)}, set pay-statusM =
revocation-complete, and output (S′1, S

′
2, pay-statusM).

If p̂t i+1 ∈ Y, compute pt i+1 = ΠZKSig.Unblind(p̂t i+1, τi+1)
and check that ΠZKSig.Verify(pk , si+1, pt i+1) = true. If this
check passes, set pay-statusC = state-updated. Otherwise,
abort and output (si+1, σi+1,⊥, pay-statusC).

. .

output:
(si+1, σi+1, pt i+1, pay-statusC)

output:
(S′1, S

′
2, pay-statusM)

Figure 3.2. ΠzkAbacus.Pay

25

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

The merchant M then runs ΠzkAbacus.Init(pp). As part of this algorithm, a PS-public key pair,

(pk , sk)
$←− ΠPS.KeyGen(ppPS) is generated, where

pk = (g, Y1, . . . , Y5, g̃, X̃, Ỹ1, . . . , Ỹ5),

and

sk = (x, y1, . . . , y5, X).

Here g ∈ G∗1 and g̃
$←− G∗2 are generators, the tuple (x, y1, . . . , y5)

$←− Z6
q forms the secret key for

signing unblinded messages, and X ← gx forms the secret key for signing blinded messages.11 The

corresponding public key is then set using (Y1, . . . , Y5)← (gy1 , . . . , gy5) and using (X̃, Ỹ1, . . . , Ỹ5)←
(g̃x, g̃y1 , . . . , g̃y5).

The proof π in ΠzkAbacus.Pay (see Figure 3.2) then becomes:

PK{(cid , BCi , B
M
i , rl i,ni+1, rl i+1, τi+1, τ i+1, ρi, pt i) :

ΠZKSig.Verify(pk , (cid ,ni, rl i, B
C
i , B

M
i , τi), pt i) = true

∧ C = com(rl i; ρi)

∧ C ′ = comZKSig(cid ,ni+1, rl i+1, B
C
i − ε, BMi + ε; τi+1)

∧ C ′′ = comZKSig(cid , close, rl i+1, B
C
i − ε, BMi + ε; τ i+1)

∧ (BCi − ε), (BMi + ε) ∈ [0, valmax)},

where valmax is related to ΠZKSig and the allowed integer range for monetary values. For Pointcheval
Sanders signatures, the message space is the group Zq. To encode a monetary value expressed as an
integer x ∈ (−a, a) for an appropriate, positive a ∈ Z, we map x to its congruence class modulo q.

Setting a = q−1
2 is a natural choice from a theoretical perspective: Zq values in the range [0, q−1

2)

are interpreted as positive and values in the range [q−1
2 , q−1] as negative. This choice of a is certainly

sufficiently large for encoding balances, but impractical. Instead, we keep the above encoding and
interpretation of positive and negative, but set a = 263. We then set valmax, the upper bound for valid
balances, as valmax = a. In our implementation, we use the technique from Camenisch, Chaabouni,
and shelat [CCs08] with PS signatures for the range proofs, so we write valmax = u`, where u = 128
and ` = 9 in our current implementation. Details about the range proof technique we use are in
Chapter 2, Section 2.2.2. We remark that our range proofs require the use of single-message PS
signatures on all possible range values with a merchant-chosen keypair. This can be done each time
we run ΠzkAbacus.Pay, but this is not efficient. Instead, we can have the merchant choose and publish
the range proof parameters and signatures at system setup; all customers then make use of the same
list of signatures for the range proofs used in ΠzkAbacus.Pay sessions. The merchant should not use
this keypair for any other purpose.

We refer the reader to Chapter 2, Section 12 for a more detailed description of the verification
step for pt i in the above zero knowledge proof of knowledge.

3.4. On-network Escrow and Disbursement Protocol ΠzkEscrowAgent

The protocol ΠzkEscrowAgent specifies how a customer and a merchant can request an arbiter, or
payment network, to act as escrow agent for zkChannel funds, and defines a set of algorithms the
arbiter should run to achieve the desired escrow and disbursement properties. In practice, the arbiter
algorithms are realized in the context of an account-based cryptocurrency via a smart contract
specification, and parties request the arbiter run algorithms via transactions that create and call into
the smart contract.

11We include both pieces as part of sk for convenience.

26

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

3.4.1. Building blocks and notation. In this section, we introduce an abstraction of the
arbiter, or payment network, that will be responsible for escrowing and distributing channel funds.
In practice, we expect the arbiter to be a cryptocurrency, although other types of payment networks,
such as trusted third parties, may certainly be used.

An arbiter (J) is a funds-controlling entity that allows for movement of funds according to
pre-specified authorization rules. Additionally, the arbiter keeps time. Specific funds (and their
associated authorization rules) are associated with accounts: an account consists of a balance, bal,
and a set of encumbrances, encumb, which specify how movement of funds may be authorized. The
arbiter associates each account with a unique identifier. The arbiter’s job is to enforce account
encumbrances and move funds between accounts as authorized.

We use the notation J [P] to denote the set of accounts for which a party P holds the necessary
credentials to move funds; sometimes we say an account with identifier acct-id that satisfies acct-id ∈
J [P] is owned by P . As shorthand, we sometimes write acct-idP to emphasize account ownership.
We assume the arbiter keeps an ordered, public ledger of accepted requests.12

The arbiter should implement the following cryptographic primitives:

– A signature scheme ΠSig.
– A revocation lock scheme ΠRlock.
– The algorithm ΠZKSig.Verify for a ZK-signature scheme ΠZKSig.

If we wish to emphasize the cryptographic primitives implemented by the arbiter, we may write
J (ΠSig,ΠRlock,ΠZKSig.Verify).

3.4.2. Arbiter algorithms. The on-network arbitration protocol ΠzkEscrowAgent relies on the
following procedures run by the arbiter J :

– Register(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B
M
0). This algorithm takes the follow-

ing elements as inputs, which we call channel registration parameters:
(1) Account information acct-idC ∈ J [C]. This input is the customer’s funding and

disbursement account identifier.
(2) Account information acct-idM ∈ J [M]. This input is the merchant’s funding and

disbursement account identifier.
(3) Customer public key pkC ∈ ΠSig.KeyGen().
(4) Merchant public key pkM ∈ ΠSig.KeyGen().
(5) Merchant closing authorization key pk ′M ∈ ΠZKSig.KeyGen().
(6) Channel identifier cid .
(7) Customer balance BC0 .
(8) Merchant balance BM0 .

If the above inputs are well-formed, this algorithm computes a contract identifier, which we
denote by J [cid], and records the Register(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B

M
0)

call on its ledger, indexed by the contract identifier J [cid]. Otherwise the algorithm aborts.

– Fund(J [cid], role, σ). This algorithm takes as input a contract identifier, a flag role ∈ {C,M},
and a signature σ ∈ ΠSig.Sign(). The algorithm retrieves the registration parameters
associated to J [cid], namely (acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B

M
0), and checks

that the signature σ is a valid ΠSig-signature that authorizes a transfer of amount Brole
0

from acct-idrole to the contract J [cid], and that acct-idrole contains at least Brole
0 . If this

check passes, the algorithm records the Fund(J [cid], role, σ) call on its (ordered) ledger,
indexed by the contract identifier J [cid], and updates the balance in J [cid] to include Brole

0

additional funds and subtracts Brole
0 funds from the balance in acct-idrole . Otherwise, the

algorithm aborts and outputs ⊥.

12If a non-cryptocurrency arbiter is used, this may be replaced by direct messaging between the arbiter and the
parties regarding account transactions.

27

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

– Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (rs , σMSig)) is an algorithm that takes as input a

contract identifer J [cid], a customer balance BC , a merchant balance BM , and one of the
following types:
(A) a pair of signatures σCSig, σ

M
Sig ∈ ΠSig.Sign();

(B) a tuple containing a revocation lock rl , a signature σZKSig ∈ ΠZKSig.Sign(), and signature
σCSig ∈ ΠSig.Sign() and an optional pair (rs , σMSig) containing a revocation secret, rs , and

a signature, σMSig ∈ ΠSig.Sign().
The algorithm does the following retrieves the data associated to the contract identifier,
namely pkC , acct-idC , pkM , acct-idM , pk ′M , cid and the total balance B. Set s̄ =
(cid , close, rl , BC , BM).

If input is of type (A), the algorithm proceeds as follows:
(A1) Checks that B ≥ BC +BM ,

ΠSig.Verify(pkC , (cid , BC , BM), σCSig) = true

and

ΠSig.Verify(pkM , (cid , BC , BM), σMSig) = true.

If not, aborts and outputs ⊥.
(A2) Records the

Disburse(J [cid], BC , BM , (·, ·, σCSig), (·, σMSig))

call on its (ordered) ledger, indexed by the contract identifier J [cid]. Adds BC funds
from J [cid] to acct-idC and BM funds from J [cid] to acct-idM .

If input is of type (B), the algorithm proceeds as follows:
(B1) Checks that B ≥ BC +BM ,

ΠSig.Verify(pkC , (s̄, σZKSig), σ
C
Sig) = true,

and

ΠZKSig.Verify(pk ′M , s̄, σZKSig) = true.

If not, aborts and outputs ⊥.
(B2) If no pair (rs , σMSig) is included as input, records the

Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (·, ·))

call on its (ordered) ledger, indexed by the contract identifier J [cid], and adds BC

funds from J [cid] to acct-idC after a time delay of δ, and BM funds from J [cid] to
acct-idM immediately.

(B3) If a pair (rs , σMSig) is specified, checks that

(a) ΠSig.Verify(pkM , (J [cid], s̄, rs), σMSig) = true; and

(b) ΠRlock.Verify(rl , rs) = true.
If either check fails, records the

Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (·, ·))

call on its (ordered) ledger, indexed by the contract identifier J [cid], adds BC funds
from J [cid] to acct-idC after a time delay of δ and BM funds from J [cid] to acct-idM
immediately. Otherwise, records the

Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (rs , σMSig))

call on its (ordered) ledger, indexed by the contract identifier J [cid], subtracts BC+BM

funds from J [cid] and adds BC +BM funds to acct-idM .

28

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

– Expiry(J [cid], σMSig). This algorithm takes as input a contract identifier J [cid] and a signature

σMSig ∈ ΠSig.Sign(). The algorithm retrieves the data associated to the contract identifier,

namely pkC , acct-idC , pkM , acct-idM , pk ′M , cid , and total balance B, and checks that
B ≥ BC +BM and ΠSig.Verify(pkM , (cid , BC , BM), σMSig) = true. If not, aborts and outputs

⊥. If yes, records the Expiry(J [cid], σMSig) call on its (ordered ledger), and after a time delay

of δ′, subtracts BC +BM funds from J [cid] and adds BC +BM funds to acct-idM

3.4.3. Protocol. The merchant is assumed to hold a revocation pair database S2.
To establish an escrow account, the customer and merchant agree on account parameters

(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B
M
0). The merchant provides the customer a signa-

ture σZKSig on a tuple s̄0 = (cid , close, rl0, B
C
0 , B

M
0), where (rl0, ·) ∈ ΠRlock.KeyGen. That is,

ΠSig.Verify(pk ′M , s̄, σZKSig) = true.13

The customer then requests the arbiter run

J [cid]← ΠzkEscrowAgent.Register(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B
M
0)

and ΠzkEscrowAgent.Fund(J [cid], C, σC), where σC is a valid ΠSig-signature that authorizes a transfer
of amount BC0 from acct-idC to the contract J [cid]. If successful, they send J [cid] to merchant. If
either request fails, they abort and output ⊥.

The merchant checks that the ledger for the account J [cid] contains the expected calls. If BM0 > 0,
the merchant requests the arbiter run ΠzkEscrowAgent.Fund(J [cid],M, σM), where σM is a valid ΠSig-
signature that authorizes a transfer of amount BM0 from acct-idM to the contract J [cid]. If successful,
they send success to customer. If the ledger check or the funding request fails, they abort and output
⊥. The customer then checks that the arbiter has accepted ΠzkEscrowAgent.Fund(J [cid],M, σM); if this
check fails, the customer should proceed to initiate a unilateral close, as specified below.

Parties can close the escrow account either collaboratively or unilaterally. As a consequence,
both parties must watch for entries in the arbiter’s ledger relevant to the the contract identifier.

To close the account collaboratively, the customer and merchant agree on closing balances and
generate the signatures σCSig and σMSig over the message (cid , BC , BM), respectively, and request the

arbiter run Disburse(J [cid], BC , BM , (·, ·, σCSig), (·, σMSig)).
To close the channel unilaterally, the merchant generates the appropriate signature σMSig and

requests the arbiter run Expiry(J [cid], σMSig).
To close the account unilaterally, either initially or in response to arbiter acceptance of

Expiry(J [cid], σMSig), the customer generates the appropriate signature σCSig and requests the arbiter

run Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (·, ·)). A merchant who holds a revocation secret rs ,

where rs satisfies ΠRlock.Verify(rl , rs) = true, then claims the entire channel balance by requesting
that the arbiter run Disburse(J [cid], BC , BM , (rl , σZKSig, σ

C
Sig), (rs , σMSig)) in response to the customer’s

unilateral close.

3.4.4. Discussion. The protocol ΠzkEscrowAgent is the component of zkChannels that backs a
ΠzkAbacus channel with an escrow account and arbitration functionality. As such, this protocol is a
three-party escrow agent protocol that achieves the following:

(1) Two parties, a customer and a merchant, may form an escrow account, the disbursement of
which is controlled by the third party, namely the arbiter.

(2) Disbursement handles the following close scenarios:
(a) Cooperative close. If the two parties cooperate to agree on a closing state, the arbiter

ensures that the escrow account funds are disbursed according to this allocation.
(b) Customer-initiated close. If the customer provides a state that has been previously

approved by the merchant, the arbiter allows both parties to eventually claim the

13This may be thought of as bootstrapping the escrow account to ensure that a customer may always close, even in
the absence of cooperation from the merchant.

29

Ch 3: Subprotocols Draft—not for distribution. Draft—not for distribution.

indicated portion of the escrow account. However, the merchant has an opportunity to
dispute in the event the customer provides an outdated state. If the merchant disputes,
the arbiter decides if the merchant’s dispute is correct, and if so, awards the entire
escrow account balance to the merchant.

(c) Merchant-initiated close. The merchant can force disbursement of escrowed funds, in
which case the arbiter gives the customer an opportunity to reveal the latest state
and close on that allocation instead. If the customer fails to provide a state, however,
the arbiter awards all money in the escrow account to the merchant. Similarly, if the
customer provides an outdated state, the merchant has an opportunity to dispute, as
detailed above.

In practice, it is crucial that the arbiter provides enough time for parties to respond to non-
cooperative closes.

3.4.5. Realization of ΠzkEscrowAgent on an account-based cryptocurrency. In an account-
based network such as Tezos or Ethereum there is an explicit notion of an account that maps well to
our notion of accounts above. To understand how to realize the ΠzkEscrowAgent algorithms, however, we
first need to establish some basic mechanisms for how the network constructs and modifies accounts,
as well as the types of encumbrances that may be placed on accounts.

Changes to accounts are achieved by sending the network transactions. The network’s job is
to check the legitimacy of and process transactions, which are messages that disburse or update
the encumbrances of funds in a specified account (or accounts). The network checks legitimacy of
received transactions and records accepted transactions in the public ledger, and then enforces the
relevant encumbrances on the specified accounts. Transactions can split, combine, create, modify, or
remove accounts according to pre-specified rules. Illegitimate transactions are ignored.

More formally, a transaction is a pair (κ, T), where κ is a tuple of instructions specifying one
or more accounts and the new encumbrances, and T is an authorization sequence, which contains
evidence showing the requirements of any pre-existing instructions have been met. An arbiter defines
the expected format and syntax of transaction instructions, as well as a language L. An encumbrance
is defined as a logical formula φ ∈ L, paired with a partial assignment of the free variables in φ. The
arbiter defines the semantics of L.

A transaction that is a syntactically correct according to the formal rules and language L of the
arbiter is well-formed. A well-formed transaction (κ, T) acting on one or more accounts is legitimate
if the valuation of the specified accounts’ encumbrances, with assignments drawn from T and possibly
contextual information, such as current time, is true. The arbiter will update accounts according to
received legitimate transactions.

The language L specifying how funds may moved is typically quite expressive, particularly in
the case that smart contracts are supported. In particular, smart contracts allow for a complete
specification of the allowed states for an account as a finite state machine and support near-arbitrary
transitions. Tezos, for example, supports smart contracts in the Michelson programming language
(which is Turing Complete), and Ethereum supports a variety of programming languages. For
zkChannels, we can specify the needed encumbrances using a smart contract.

In the following, we do not attempt to write a complete ideal functionality that captures the
formal language of an account-based arbiter. Instead, we detail the necessary procedures for a
customer and merchant to open, fund, and disburse funds from an escrow account using transactions
sent to the arbiter. Each party must continuously monitor the arbiter’s ledger for updates to the
escrow account; transactions should not be considered accepted until they have been on the ledger
for some minimum length of time.14 In the following, we use the notation tx(params) to denote the

14To borrow terminology from account-based arbiters in which the ledger is realized as a sequence of blocks, this
typically means that the parties establish an expected confirmation depth and do not consider a transaction final until
that depth has been reached.

30

Ch 3: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

instructions of a transaction of type tx, and tx(params;T) to denote a full transaction, replete with
authorization sequence T .

To open and fund an escrow account, the customer and merchant must agree on a smart contract
and establish this contract with the arbiter by sending a transaction

contract(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B
M
0).

This establishes an escrow account as a smart contract. They must then each fund their portion of
the smart contract by sending a transaction escrow(J [cid], role, σ)) for role ∈ {C,M} as appropriate.
The smart contract and funding transactions processing are in Figure 3.3.

To close an escrow account, the parties send a sequence of transactions to the arbiter to realize
Disburse() and Expiry(). These transactions are in Figure 3.4. The procedure the customer uses to
close the escrow account is in Figure 3.5 and the procedure the merchant uses to to close the escrow
account is in Figure 3.6. In both figures, we use message-based processing as shorthand, including
writing “from the arbiter J” as though the arbiter sends messages to the participants, but in practice,
this means that the message in question has been detected on the arbiter’s ledger. We stress that
the correctness of the protocol for each party relies on their adherence to these procedures. A party
who fails to monitor the arbiter ledger or otherwise deviates from this specification risks losing their
escrow account funds.

31

Ch 3: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

The following details the checks an arbiter enforces on the transactions received during escrow
account establishment. In processing a transaction, the arbiter also enforces balance checks, i.e.,
if the transaction specifies an allocation (B) such that B exceeds the amount of money in the
specified funding account, the arbiter rejects the transaction.

on contract(acct-idC , acct-idM , pkC , pkM , pk
′
M , cid , B

C
0 , B

M
0) : // ΠzkEscrowAgent.Register()

Expect BC
0 funds from acct-idC .

Expect BM
0 funds from acct-idM .

Set status = initialized and timeout = ⊥.
Set encumbrances:

if (status = initialized){Allow refund transaction.}
if (status = contract-funded){

Allow mutual-close(J [cid], BC , BM ;σC , σM).

Allow expiry(J [cid];σM).

Allow close(J [cid], rl , BC , BM ;σC , σZKSig).

}
if (status = pending-close){

if (type = um){
Allow close(J [cid], rl , BC , BM ;σC , σZKSig).

if (CurrentTime > J [cid].timeout){
Allow claim(J [cid],M ;σM).

}
} else {

Allow dispute(J [cid], rl ; rs , σM).

if (CurrentTime > J [cid].timeout){Allow claim(J [cid], C;σC)}
}

}
Set contract identifier J [cid].

Record contract in ledger.

on escrow(J [cid], role, σ)) : // ΠzkEscrowAgent.Fund()

Add Brole funds from acct-id role .

if (BC +BM funds added){Set status = contract-funded.}

Figure 3.3. Opening an escrow account on account-based cryptocurrency J

32

Ch 3: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

The following details the checks the arbiter enforces on the transactions received. In processing a
transaction, the arbiter also enforces balance checks, i.e., if the transaction specifies an allocation
(BC , BM) such that BC +BM exceeds the total amount of money in the escrow account, the
arbiter rejects the transaction.

on close(J [cid], rl , BC , BM ;σC , σZKSig) :

Set s̄ = (cid , close, rl , BC , BM).

if (ΠSig.Verify(pkC , close(J [cid], rl , BC , BM), σC) 6= true) return

if (ΠZKSig.Verify(pk ′M , s̄, σZKSig) 6= true) return

Move BM funds from J [cid] to acct-idM .

Post to ledger, set J [cid].timeout = CurrentTime + δ, and set type = uc.

on dispute(cid , rl ; rs , σM) :

if ((ΠRlock.Verify(rl , rs) = true) and (ΠSig.Verify(pkM , dispute(cid , rl), σM) = true)){
Post to ledger and move remaining funds from J [cid] to acct-idM .

} else return

on expiry(J [cid];σM) :

if (ΠSig.Verify(pkM , expiry(J [cid]), σM) 6= true) return

Post to ledger, set J [cid].timeout = CurrentTime + δ′, and set type = um.

on mutual-close(J [cid], BC , BM ;σC , σM) :

if (ΠSig.Verify(pkC , mutual-close(J [cid], BC , BM), σC) 6= true) return

if (ΠSig.Verify(pkM , (J [cid],mutual-close, cid , BC , BM), σM) 6= true) return

Post to ledger and move BC funds from J [cid] to acct-idC and BM funds from J [cid] to acct-idM

on claim(J [cid], role;σ) :

if ΠSig.Verify(pk role , claim(J [cid], role), σ) 6= true return

if (role = C and type 6= uc) or (role = M and type 6= um) return

Post to ledger and move remaining funds to acct-id role .

Figure 3.4. ΠzkEscrowAgent realization of Disburse() and Expiry() as transactions sent to an
account-based cryptocurrency J .

33

Ch 3: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Initiate ΠzkEscrowAgent unilateral close:

Send (close, cid , uc) to self.

Initiate ΠzkEscrowAgent mutual close:

Send (close, cid ,mutual) to self.

Message processing:

on (close, cid , type) from self : // Send customer closing transaction to J.

Retrieve most recent closing state s̄ = (cid , close, rl , BC , BM) from memory.

Retrieve closing authorization signature σZKSig from memory.

Retrieve contract identifier J [cid] from memory.

if (type = mutual){
Send (mutual-close, J [cid], s̄, σZKSig) to M.

}
else {// type ∈ {uc, um}

Construct close(J [cid], rl , BC , BM).

Compute σC = ΠSig.Sign(skC , close(J [cid], rl , BC , BM)).

Send close(J [cid], rl , BC , BM ;σC , σZKSig) to J.

}

on expiry(J [cid]) from J : // Respond to unilateral merchant close.

Send (close, cid , um) to self.

on (close(J [cid], rl , BC , BM), time) from J : // Finish processing close.

Construct claim(J [cid], C).

Compute σC = ΠSig.Sign(skC , claim(J [cid], C)).

At time time + δ′, send claim(J [cid], C;σC) to J.

on (mutual-close, σM) from M :

Retrieve pending mutual close data from memory.

if ΠSig.Verify(pkM , (J [cid],mutual-close, cid , BC , BM), σM) 6= 1 return

Construct mutual-close(J [cid], BC , BM).

Compute σC = ΠSig.Sign(skC , mutual-close(J [cid], BC , BM)).

Send mutual-close(J [cid], BC , BM ;σC , σM)) to J.

Figure 3.5. ΠzkEscrowAgent customer close procedure on account-based cryptocurrency J .

34

Ch 3: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Initiate ΠzkEscrowAgent unilateral close:

Send (close, cid , um) to self.

Message processing:

on (close, cid) from self : // Send expiry transaction to J.

Retrieve contract identifier J [cid] from memory.

Construct claim(J [cid],M).

Compute σM = ΠSig.Sign(skM , expiry(J [cid])).

Send expiry(J [cid];σM) to J.

on (expiry(J [cid]), time) from J : // Claim escrow account funds after timeout.

Construct claim(J [cid],M).

Compute σM = ΠSig.Sign(skM , claim(J [cid],M)).

At time time + δ, send claim(J [cid],M ;σM) to J.

on (close(J [cid], rl , BC , BM), time) from J : // Check and process customer close transaction.

if (rl , ·) ∈ S2{
Retrieve entry (rl , rs) from S2.

Construct dispute(J [cid], rl).

Compute σM = ΠSig.Sign(skM , dispute(J [cid], rl)).

Before time time + δ′, send dispute(J [cid], rl ; rs , σM) to J.

} else {Add (rl , ·) to S2.}

on (mutual-close, J [cid], s̄, σZKSig) from Ci :

Retrieve contract identifier J [cid] from memory.

if ΠZKSig.Verify(pk ′M , s̄, σZKSig) 6= 1 return

Extract revocation lock rl from s̄.

if (rl , ·) ∈ S2 return

Compute σM = ΠSig.Sign(skM , (J [cid],mutual-close, cid , BC , BM)).

Send (mutual-close, σM) to Ci.

Figure 3.6. ΠzkEscrowAgent merchant close procedure on account-based cryptocurrency J .

35

CHAPTER 4

zkChannels

We define zkChannels as a composition of ΠzkAbacus and ΠzkEscrowAgent. Composition of channel
and escrow account setup is done sequentially, but channel payments and channel closure must handle
concurrency of the merchant revocation lock database. We assume the merchant revocation lock
database implements atomic operations.

4.1. Preliminaries

The customer and merchant interact with each other and the arbiter using sessions as defined in
Chapter 3.2. In the composed protocol ΠzkChannels, the payment protocol depends on ΠzkAbacus.Pay
and reveals no information that is linkable to any part of ΠzkEscrowAgent; as a consequence, nothing that
is sent to the arbiter will be linkable to a particular ΠzkChannels.Pay session. In practice, a customer
may use an anonymizing networking tool such as Tor or Nym to provide stronger anonymity for
all ΠzkChannels sessions. This is to evade traffic analysis by third parties during all sessions and by
the merchant during payments. If desired, communication with the arbiter may also rely on an
anonymizing networking tool.

4.2. System set up

To initialize system parameters, run pp← ΠzkAbacus.Setup(1λ).
The merchant M runs pkM ← ΠSig.KeyGen(), chooses a funding and disbursement account

acct-idM , and runs (S0, S1, S2, (pk ′M , sk ′M)) ← ΠzkAbacus.Init(pp). The activation database S0 and
nonce database S1 are internal to ΠzkAbacus, but the revocation lock database S2 is shared between
ΠzkAbacus and ΠzkEscrowAgent.

4.3. Channel establishment

An overview of channel establishment appears in Figure 4.1.
The interactive protocol ΠzkChannels.Establish takes as shared input the merchant public key

information pkM and pk ′M (together with associated account acct-idM). Customer inputs consist of
account information with the desired arbiter, J [C], initial customer balance BC and initial merchant
balance BM . Merchant inputs consist of their secret keys for ΠzkEscrowAgent and ΠzkAbacus and their
activation database S0 for ΠzkAbacus. Both parties contribute randomness to the channel identifier ;
this channel identifier must be unique, which is achieved (except with negligible probability) by
instantiating the identifier as the output of a cryptographic collision-resistant hash function.

(1) The customer prepares to run ΠzkAbacus and ΠzkEscrowAgent. That is, they initialize channel
status, which we denote by status, to ⊥. They run pkC ← ΠSig.KeyGen() and choose a
funding and disbursement account acct-idC (over which they have control), and choose
a random contribution to the channel identifier, namely cidC ∈ {0, 1}λ. They send pkC ,
acct-idC , cidC , BC0 , and BM0 to the merchant.

(2) The merchant prepares to run ΠzkAbacus and ΠzkEscrowAgent. That is, they initialize the
channel status, which we denote by status, to ⊥. They check that each element of the
customer’s message is well-formed and abort and output ⊥ if not. They decide whether
or not to accept the channel request. If yes, they choose at random a contribution to
the channel identifier, namely cidM ∈ {0, 1}λ, and send (accept, acct-idM , cidM) to the

Ch 4: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Table 1. Channel status values

initialized Set by C after they have received valid closing authorization signature for initial
state. Set by M once they have sent closing authorization signature for initial
state. For both parties, this is immediately after the ΠzkAbacus.Initialize() call
completes successfully.

contract-funded Set by each party as soon as they have verified that the contract is funded.

ready Set by C after they have received pt0; set by M once they have sent pt0

frozen Set by C after failed payment.

pending-close Set by each party after either sending a ΠzkEscrowAgent.Disburse() or
ΠzkEscrowAgent.Expiry() call to the arbiter or reading such a call in the arbiter’s
ledger.

closed Set by C and M when channel balances have been disbursed by the arbiter.

customer. If no, they send reject message, abort, and output ⊥. They set channel identifier
cid = H(cidC , cidM , pkC , pkM , pk ′M).

(3) The customer checks that cidM ∈ {0, 1}λ. If yes, they set channel identifier cid =
H(cidC , cidM , pkC , pkM , pk ′M) and continue. Otherwise, they abort and output ⊥.

(4) The customer and merchant proceed with ΠzkAbacus. That is, they collaboratively run

ΠzkAbacus.Initialize(pk ′M , cid , BC0 , B
M
0 , (S0, sk ′M)M);

this involves a single round of communication. See section 3.3.2 for details. At a high level,
the customer forms and proves correctness of their initial state s0 = (cid ,n0, rl0, B

C
0 , B

M
0)

and initial closing state s̄0 = (cid , close, rl0, B
C
0 , B

M
0) in zero knowledge and receives a

blind signature on s̄0, namely σ0, their initial closing authorization signature, from the
merchant. If successful, both parties set the channel status to initialized.

(5) The customer proceeds with ΠzkEscrowAgent. That is, they request that the arbiter run

J [cid]← ΠzkEscrowAgent.Register(acct-idC , acct-idM , pkC , pkM , pk ′M , cid , BC0 , B
M
0).

If successful, they request that the arbiter run ΠzkEscrowAgent.Fund(J [cid], C, σC), where σC
is a valid ΠSig-signature that authorizes a transfer of amount BC0 from acct-idC to the
contract. If successful, they send J [cid] to merchant. If either of the procedures from
ΠzkEscrowAgent fails, they abort and output ⊥.

(6) The merchant proceeds with ΠzkEscrowAgent. That is, they check that the ledger for the
account J [cid] contains the expected calls. If BM0 > 0, the merchant requests that the arbiter
run ΠzkEscrowAgent.Fund(J [cid],M, σM), where σM is a valid ΠSig-signature that authorizes
a transfer of amount BM0 from acct-idM to the contract. If successful, they send success to
customer. If the ledger check or the funding request fails, they abort and output ⊥.

(7) If dual-funded, the customer checks that ΠzkEscrowAgent.Fund(J [cid],M, σM) has been ac-
cepted by the arbiter; if this check fails, the customer should proceed to initiate a unilateral
close, and then output ⊥.

(8) The customer and merchant run ΠzkAbacus.Activate(pp, pk ′M , cid , (s0, τ)C , (S0, sk)M). The
customer receives and stores a payment tag pt0 and sets status = ready, if successful, and
otherwise initiates a unilateral close in ΠzkEscrowAgent, and then outputs ⊥. Similarly, the
merchant sets status = ready if successful, and otherwise initiates a unilateral close in
ΠzkEscrowAgent, and then outputs ⊥.

38

Ch 4: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

ΠzkChannels.Establish(pp, pkM , acct-idM , pk ′M , (J [C], BC
0 , B

M
0)C , (skM , sk ′M , S0)M)

. .

Initialize:

(1) The merchant-specific parameters for channel and escrow accounts for ΠzkAbacus and ΠzkEscrowAgent are

fixed at merchant setup.

(2) Remaining channel and escrow account parameters for ΠzkAbacus and ΠzkEscrowAgent are picked as follows:

(a) The customer chooses initial balances BC
0 , and BM

0 .

(b) The customer chooses ΠzkAbacus customer parameters pkC and acct-idC .

(c) Both the customer and merchant contribute to the generation of the channel identifier cid (used
in both ΠzkAbacus and ΠzkEscrowAgent) by picking cidC and cidM , respectively. They then set

cid = H(cidC , cidM , pkC , pkM , pk ′M).

(3) The merchant either accepts or rejects the channel request.
(4) They run ((s̄0, s0, rs0, τ0, σ0)C , (S

′
0)M)← ΠzkAbacus.Initialize(pk ′M , cid , BC

0 , B
M
0 , (S0, sk ′M)M).

(5) They then set channel status to initialized.

. .

Open: The customer and merchant follow ΠzkEscrowAgent to open an escrow account with identifier contract-ID

bound to the ΠzkAbacus channel cid . They then set channel status to contract-funded.

. .

Activate: The customer and merchant complete channel setup in ΠzkAbacus for channel cid by running
((s0, pt0)C , (success)M) ← ΠzkAbacus.Activate(pk ′M , cid , (s0, τ0)C , (S

′
0, sk ′M)M). They then set channel status

to ready.

Figure 4.1. Overview of zkChannels channel establishment protocol

4.4. Channel payments

Say a customer C wishes to purchase a good or service, a description of which we denote by x,
from the merchant M using their previously established zkChannel with identifier cid . Assume the
cost is ε.

(1) To make a payment on channel cid , the customer C establishes a session with the merchant
M and sends a payment request message containing the tuple (x, ε) to M .

(2) The merchant checks (x, ε) and decides whether to accept or reject the payment. If the
former, they send accept-payment; if the latter, they send reject-payment and abort.

(3) Upon receipt of reject-payment, the customer C aborts the session. Upon receipt of
accept-payment, the customer and merchant run

ΠzkAbacus.Pay((pk ′M , ε, (si, pt i)C , (S1, S2, sk ′M)M)),

where si and pt i are the most recent channel state and associated payment tag for channel
cid , respectively.

(4) Whatever the purpose of payment, the indicator pay-statusM can be used by the merchant
to make decisions about whether a payment is complete and/or a service should be provided.
That is, the merchant uses pay-statusM and the context of the payment x to determine
further action, such as the provision of a requested good or service. More precisely, the
merchant extracts the resulting pay-statusM from ΠzkAbacus.Pay output and behaves as
follows:
(a) If pay-statusM = ⊥, the payment has unequivocably failed. No good or service should

be provided.
(b) If pay-statusM = revocation-incomplete, then if ε < 0, the merchant should consider the

payment complete. Otherwise, the merchant should consider the payment incomplete
and no good or service should be provided.

39

Ch 4: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

(c) If pay-statusM = revocation-complete, then the merchant should consider the payment
complete.

(5) The customer extracts the resulting pay-statusC from ΠzkAbacus.Pay output and does the
following:
(a) If pay-statusC = revocation-incomplete, the customer sets status = frozen, initiates

unilateral closure on state s̄i as specified in Section 4.5.1

(b) If pay-statusC = revocation-complete, the customer sets status = frozen, initiates
unilateral closure on state s̄i+1 as specified in Section 4.5.

(c) If pay-statusC = state-updated, then the customer should expect to receive the re-
quested good or service, and may continue to make additional payments on the
channel.

4.5. Channel closing

Both parties watch the arbiter’s ledger for calls related to the channel escrow account, as in
ΠzkEscrowAgent. Three types of closing are supported, inherited from ΠzkAbacus and ΠzkEscrowAgent:

(1) To close the account collaboratively:
(a) The customer initiates

ΠzkAbacus.Close(pp, pk , cid , (s̄, σ)C , (S2)M)

on the most recent closing state s̄ = (cid , close, rl , BC , BM) and corresponding closing
authorization signature σ.2

(b) If ΠzkAbacus.Close() is successful, the merchant outputs (cid , rl ,⊥, true), and then
generates the appropriate signature σMSig authorizing disbursement from the escrow

account for the requested balances. The merchant then adds (rl , ·) to their revocation-
pair database S2 and sends σMSig to the customer. If unsuccessful, the merchant output

is (cid , rl , rs , false), in which case they should abort the collaborative close and output
⊥.

(c) The customer checks that ΠSig.Verify(pkM , (cid ,mutual-close, BC , BM), σMSig) = true. If

yes, they generate the appropriate signature σCSig authorizing disbursement from the
escrow account for the requested balances and request the arbiter run

Disburse(J [cid], BC , BM , (·, ·, σCSig), (·, σMSig)).

If no, they abort and output ⊥.3

(d) Once the Disburse(J [cid], BC , BM , (·, ·, σCSig), (·, σMSig)) call is accepted by the arbiter

(i.e., is recorded on its ledger) the customer and merchant set status = closed.
(2) To close the channel unilaterally, the merchant sets status = pending-close, generates the

appropriate signature σMSig, and requests the arbiter run Expiry(J [cid], σMSig). After arbiter

acceptance of the call and completion of the funds transfer after time δ′, the customer and
merchant each set status = closed.

(3) To close the account unilaterally, either initially or in response to a run of Expiry(J [cid], σMSig),

the customer sets status = pending-close, generates the appropriate signature σCSig and

1If the customer has a valid closing signature on the new state, but has not yet sent the revocation information for
the previous state, we could differentiate customer behavior based on whether the value of the payment is positive or

negative, and allow a customer to close on either the old or the new state according to what is most advantageous
monetarily. However, in practice, this situation arises if the customer process crashes without losing the new closing

signature but before atomically preparing and sending the revocation information, and this window of possibility is on

the order of milliseconds. A bug that causes a crash at this point would be problematic if a refund has been issued.
2If the merchant knows how to contact the customer, they can request the customer participate in a collaborative

close.
3In this case, the customer should initiate a unilateral customer close.

40

Ch 4: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

requests the arbiter run

Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (·, ·)),

where σZKSig is the closing authorization signature for the closing state (cid , close, rl , BC , BM).
After arbiter acceptance of the call, the merchant sets status = pending-close and

checks to see if there exists a revocation pair (rl , rs) ∈ S2. If yes, before time δ passes, the
merchant claims the entire channel balance from the escrow account by requesting that the
arbiter run

Disburse(J [cid], BC , BM , (rl , σZKSig, σ
C
Sig), (rs , σMSig)),

in response to the customer’s unilateral close. If no, the merchant adds (rl , ·) to their
revocation pair database S2.4

After completion of the funds transfer after time δ, the customer and merchant each
set status = closed.

4.6. Discussion

The main focus of zkChannels is the achievement of customer payment history privacy. This
choice involves certain tradeoffs. While we always guarantee an unlinkable method to close and
that no honest party loses their share of the escrowed funds, we do not ensure (1) the usability of
the channel for future payments; (2) the merchant actually provides the requested service; or, most
interestingly, (3) payments occur only on channels with an open on-network escrow account. We argue
that the lack of these properties is relatively benign in the context of a traditional customer-merchant
relationship.

From the perspective of a customer, the most natural use cases for a point-to-point private
payment channel involve a merchant who is semi-trusted. That is, the merchant either already has
an established reputation or the customer is willing to build a trusted relationship with an unknown
merchant over the course of a sequence of payments. The customer does not risk their entire channel
balance in engaging with the merchant; they risk only a single payment amount, a risk profile that
maps well to current practice. In other words, we do not attempt to replace all mechanisms of trust
in society with zkChannels.

The perspective of the merchant with respect to the lack of property (3) above is a more
interesting question. Say the customer makes a series of payments on the underlying ΠzkAbacus channel
corresponding to intermediate states s0, s1, . . . , sm, and then closes the channel on si for some i < m.
Our use of on-network punishment in ΠzkEscrowAgent actually amounts to a soft punishment : the
customer is still able to make a valid, correct off-network payment using the most recent state sm,
since they do not reveal the associated nonce or revocation lock on closing the escrow account.
This amounts to the conversion of the underlying ΠzkAbacus payment channel from one backed by
on-network funds to one backed by a merchant gift card. The issue is that the transactions the
customer may use to close the escrow account in ΠzkEscrowAgent do not include enough information for
the merchant (or anyone else) to infer anything about the closing state except whether or not it is
outdated. That is, we do not provide a reconciliation mechanism for the merchant to derive the most
recent state and prevent further payments. However, we stress that, in this situation, the customer
cannot make payments for which they have not already transferred the corresponding funds to the
merchant. We leave the extension of our protocol to provide reconciliation mechanisms (both off-
and on-chain) as future work.

Another caveat of zkChannels is the need to handle concurrent payments (realized using ΠzkAbacus)
and payments concurrent with escrow account closes (realized using ΠzkEscrowAgent). It is crucial

4If concurrent operations are allowed, the merchant database must be carefully constructed to avoid the situation
in which concurrent calls to the database allow an on-network escrow account close and a payment to happen on the
same state simultaneously. Alternatively, the protocol for closing the escrow account may be modified to detect this
situation with high probability.

41

Ch 4: zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

that the merchant procedures for processing payments and closing escrow accounts ensures that
a merchant detect this situation and respond appropriately. In the abstract, we can require the
merchant handle operations sequentially, i.e., we can require the revocation database be read- and
write-locked. However, in practice, this solution is not scalable, and so must be handled carefully by
the implementation of the merchant database.

4.7. Implementation overview

We defer to the zkChannels specification [Inc21] for implementation details. In particular, we
detail how to realize an account-based arbiter using Tezos for ΠzkEscrowAgent; this involves defining and
implementing a notification service to automatically monitor escrow accounts. We also sketch our
approach to handle concurrent channel payment and closing activity, which involves implementing a
merchant database with atomic operations.

42

Bibliography

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan L.

Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, pages 56–73, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.
[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Yourself: Pitfalls of the Fiat-

Shamir Heuristic and Applications to Helios. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.

Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Xiaoyun

Wang, and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658, pages 626–643.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient protocols for set membership and range proofs.
In Josef Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, pages 234–252, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps.
In Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, pages 56–72, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin,
Heidelberg, 1987. Springer Berlin Heidelberg.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In Proceedings
of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pages 291–304, New York,

NY, USA, 1985. ACM.

[Inc21] Bolt Labs Inc. zkChannels: A specification of the blockchain interactions. https://github.com/

boltlabs-inc/zkchannels-spec, 2021.

[Ped92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan

Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

[PS16] David Pointcheval and Olivier Sanders. Short Randomizable Signatures. In Kazue Sako, editor, Topics in

Cryptology - CT-RSA 2016, volume 9610, pages 111–126. Springer International Publishing, Cham, 2016.
[PS18] David Pointcheval and Olivier Sanders. Reassessing security of randomizable signatures. In Nigel P.Editor

Smart, editor, Topics in Cryptology – CT-RSA 2018, volume 10808, page 319–338. Springer International
Publishing, 2018.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, Jan 1991.

43

https://github.com/boltlabs-inc/zkchannels-spec
https://github.com/boltlabs-inc/zkchannels-spec

A. Proof Strategy Overview

Note to the reader: This section is a rough sketch. In particular, the ideal functionality is not
finalized.

We now give an overview of the strategy we will follow to prove the security of our construction.
We note that our protocol is extraordinarily complex. This means that analyzing the entire

protocol at once produces a proof that it too long and complicated to meaningfully consume.
While this proof might be technically correct, it does little to increase the reader’s confidence
that the construction is correct. As such, we will attempt to break down the proof into more
manageable subcomponents, and then argue about the composition of the subcomponents. Namely,
we give definitions for the off-network channel functionality FzkAbacus and the on-network arbitration
functionality FzkEscrowAgent, and then argue that their composition results in the desired functionality
FzkChannels.

All of our proofs will be simulation-based security proofs that allow corruption of an arbitrary
subset of the customer and the merchant. This entails showing that our protocols realize some ideal
functionality. This ideal functionality is trusted to perform prescribed actions and can maintain
tamper-proof state across interactions. By showing that the protocol realizes this functionality, we
show that the protocol provides the same security and privacy guarantees as the ideal functionality.

A.1. Off-Network Channels: zkAbacus. The zkAbacus functionality manages changes to
the state held by the customer and the merchant. Note that in the context of the off-network channel,
the state is not inherently meaningful; we relegate interpreting the meaning of the off-network state
to the on-network arbitration functionality discussed next.

The zkAbacus functionality provides interfaces for: (1) initializing and activating the virtual
channel on some mutually agreed upon (but arbitrary) balance, (2) allowing the customer to make
payments over the virtual channel, which update the balances in the channel, and (3) closing down
the channel. When closing down a channel, the ideal functionality determines if the closure is honest
or dishonest, sending this determination to an arbiter J . Again, as noted above, the meaning of this
determination is left to the on-network arbitration functionality.

The protocol ΠzkAbacus has an initialize phase, a pay phase, and a close phase. During the initialize
phase, the customer and merchant exchange non-anonymous information required to show that the
first balances are being set up correctly. At the end of this phase, the customer can anonymously
initiate a run of the pay protocol, which updates the balances by some value ε. We note that there are
several abort conditions during the pay protocol that result in the customer having different options
during the close phase. Finally, the close phase is very simple: the custom makes a claim about the
closing balances for the channel. If these balances do not represent the most recent balances in the
channel, the merchant will be able to detect this and show that the closure is dishonest.

We argue that the protocol realizes the ideal functionality using a standard simulation-based
proof. In this argument, we define a simulator that runs the real protocol with the corrupt players
while interacting only with the ideal functionality. Because the ideal functionality effectively hides
information from the simulator, the simulator must be able to run the real protocol without any
knowledge of the honest player’s private state and without knowing any more about their actions
than is provided by the ideal functionality.

A.2. On-Network Arbitration: zkEscrowAgent. The zkEscrowAgent functionality man-
ages the resources that are put into the virtual channel. Specifically, in the case of a payment channel,

45

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

the functionality manages the creation of an escrow account that hold funds from the customer and
merchant, and dispersing those funds as appropriate when the channel is closed down. Note that the
zkEscrowAgent functionality need not see any of the payment interactions between the customer and
the merchant. Instead, it only operates on information explicitly provided to it.

The zkEscrowAgent functionality provides interfaces for: (1) the creation of an escrow account,
(2) the funding of that account, and (3) dispersal of the funds in that account. The funding of the
account comes from funds that are given to the players during set-up. This represents the initial
holdings of players coming into this protocol. When funds are dispersed, they are allocated back into
the control of the player as appropriate.

The protocol ΠzkEscrowAgent is defined in the presence of a trusted network functionality. This
network is capable of creating new accounts and enforcing rules on how the funds in the account are
distributed. The players specify the rules for the new account and then move their funds into the
account.

A.3. Composition: zkChannels. The composing the two functionalities with a simple proto-
col realizes the complete FzkChannels functionality. This functionality captures the end-to-end goals of
our project. The players start by creating and funding a new account with FzkEscrowAgent. Next, they
initialize a virtual channel with the corresponding balances from the new account using FzkAbacus.
Then, there is an arbitrary length of time during which the customer may initialize new payments
using FzkAbacus. When the customer closes down the virtual channel, this provides the necessary
information to FzkEscrowAgent to determine how funds should be distributed.

We note that there do not appear to be any significant obstacles to composing these two protocols.
The main barrier to parallel composition is rewinding, as that can desynchronize different elements of
the protocol. However, any rewinding that happens during simulation is highly localized. Specifically,
we only use rewinding to extract from zero-knowledge proofs that have been flattened by Fiat-Shamir.

The zkChannels functionality can be seen as the combination of zkEscrowAgent and zkAbacus.
In handles both the escrow and allocation of funds, as well as payments on that channel. Because
it has visibility both into the actually currency accounts and the payments that are made on the
channel, it can be use to correctly enforce closure behavior based on all of the payments that were
made.

B. Draft ΠzkAbacus ideal functionality

In the following section, we describe the ideal functionality. Figures C.2-?? describe channel
opening, payments from the customer and merchant perspective, respectively, and channel closing.

46

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

B.1. Channel Opening. We begin by describing the ideal functionality’s interfaces for opening
a new channel. There are two such interfaces: initialize-channel is called by a customer wishing to
create a new channel. activate-channel is called by the merchant when they wish to accept a channel
and allow the customer to make payments on that channel.

on (initialize-channel, cid , B0
C , B

0
M) from Ci for some i ∈ {1, . . . , `} :

if (∃C[cid]) return

// Set (status, C, ε, pid , cust-strat, states-list, aborted-pay-close).

Set C[cid] = (initialized, Ci,⊥,⊥,⊥, [(⊥, B0
C , B

0
M)], false)

Send (initialized, cid , Ci, B
0
C , B

0
M) to M

on (activate-channel, cid) from M :

// Channel must be initialized.

if (@C[cid] or C[cid].status 6= initialized) return

Set C[cid].status = open

Send (activated, cid) to M

47

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

B.2. Channel Payments. We continue by describing the ideal functionality’s interfaces for
making payments. There are two such interfaces: pay-offered is called by the customer when they
wish to make a payment. The interface accepts a strat ∈ {honest, dishonest} parameter that specifies
if the customer wishes to freeze the payment channel. dishonest can only be used by a corrupted
customer. If the merchant is corrupt, they use the pay-instr interface to specify if they wish to
freeze the channel. The interface accepts a instr ∈ {reject, freeze-after-pay, honest-accept} parameter
to specify if the payments should be rejected, the channel should be frozen, or the payment should
be accepted (respectively).

// A customer makes a pay offer with a prespecified strategy strat ∈ {honest, dishonest}.
on (pay-offered, cid , ε, strat) from Ci for some i ∈ {1, . . . , `} :

// Channel must be open.

if (@C[cid] or C[cid].C 6= Ci or C[cid].status 6= open) return

Retrieve latest state as (·, BC , BM) = C[cid].states-list[LAST]

// Honest payments have valid amounts.

if ((Ci 6∈ I or strat = honest) and (BC < ε or BM < −ε)) return

Sample random pid and set C[cid].pid = pid

// Cases for honest merchant.

if (M 6∈ I){
// Honest payments go through.

if (Ci 6∈ I or strat = honest){
Append (C[cid].pid , BC − ε, BM + ε) to C[cid].states-list

Send (pay,C[cid].pid , ε) to M and Ci

// Invalid amount freezes before payment.

} elif (BC < ε or BM < −ε){
Set C[cid].status = frozen

Send (frozen,C[cid].pid , ε) to M and Ci

// Valid amount freezes after payment and allows closure on previous state.

} else {
Append (C[cid].pid , BC − ε, BM + ε) to C[cid].states-list

Set C[cid].aborted-pay-close = true,C[cid].status = frozen

Send (frozen,C[cid].pid , ε) to M and Ci

}
// Merchant is corrupt, and therefore can specify instructions for this payment.

} else {
Set C[cid].ε = ε,C[cid].cust-strat = strat,C[cid].status = pay-offered,

Send (pay-offered,C[cid].pid , ε) to M

}

48

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

// Merchant instructions instr ∈ {reject, freeze-after-pay, honest-accept}.
on (pay-instr, pid , instr) from M :

// Find channel and ensure merchant corrupt.

if (@cid s.t. C[cid].pid = pid or C[cid].status 6= pay-offered or M 6∈ I) return

Retrieve latest state as (·, BC , BM) = C[cid].states-list[LAST]

// Reject payment and freeze the channel.

if (instr = reject){
C[cid].status = frozen

Send (reject,C[cid].pid) to M and C[cid].C

// Customer acts dishonestly.

} elif (C[cid].cust-strat = dishonest and instr ∈ {freeze-after-pay, honest-accept}){
// Invalid amount freezes before payment.

if (BC < C[cid].ε or BM < −C[cid].ε){
Set C[cid].status = frozen

Send (frozen,C[cid].pid ,C[cid].ε) to M and C[cid].C

// Valid amount freezes after payment and allows closure on previous state.

} else {
Append (C[cid].pid , BC − ε, BM + ε) to C[cid].states-list.

Set C[cid].aborted-pay-close = true,C[cid].status = frozen

Send (frozen,C[cid].pid ,C[cid].ε) to M and C[cid].C

}
} elif (C[cid].cust-strat = honest and instr = freeze-after-pay){

Append (C[cid].pid , BC − ε, BM + ε) to C[cid].states-list

Set C[cid].status = frozen

Send (frozen,C[cid].pid , ε) to M and C[cid].C

} else { // instr = honest-accept and C[cid].cust-strat = honest

Append (C[cid].pid , BC − ε, BM + ε) to C[cid].states-list

Set C[cid].cust-strat = ⊥,C[cid].status = open

Send (pay,C[cid].pid , ε) to M and C[cid].C

}

49

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

B.3. Channel Closing. We finish by describing the ideal functionality’s interface for closing a
channel. Because we are only concerned with customer initiated closures in this context, there is
only one interface for closing. The customer chooses a state in the history of the channel on which to
close, specified by its index. Specifically, a honest customer can choose only the more recent state,
whereas a corrupt customer may choose any index.

on (close, cid , index) from Ci for some i ∈ {1, . . . , `} :

if (@C[cid] or C[cid].C 6= Ci or C[cid].status 6∈ {open, pay-offered, frozen}) return

// Honest close on last state.

if (index = LAST){
Retrieve latest state as (pid , BC , BM) = C[cid].states-list[LAST]

Set C[cid].status = closed

Send (closed, cid , honest, BC , BM) to Ci,M

// Close on penultimate state.

} elif (Ci ∈ I and C[cid].status = frozen and C[cid].aborted-pay-close = true and index = LAST− 1){
Retrieve penultimate state as (pid , BC , BM) = C[cid].states-list[LAST− 1]

Set C[cid].status = closed

Send (closed, cid , honest, BC , BM) to Ci,M

// Close on stale state.

} elif (Ci ∈ I and 0 ≤ index < LAST){
Retrieve closing state as (pid , BC , BM) = C[cid].states-list[index]

// Note: status is not set to closed.

Send (closed, cid , dishonest, pid , BC , BM) to Ci,M

}

50

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Modeling Communication and Players. Throughout both of the following experiments, we as-
sume that the messaging happens during synchronous rounds and than only one player sends a
message in any given round. Specifically, each messaging round is assigned to a particular player,
during which that player has the opportunity to send a messages; The assignment of each consecutive
messaging round rotates between players. Additionally, we assume that all messages are sent over
point-to-point channels that are fully secure; that is, the adversary cannot see messages sent between
honest players or between honest players and an ideal functionality. This simplified communication
model allows us to focus on analyzing what the cryptographic protocol we present achieves, and
removes concerns about race conditions and asynchronous communication.

Additionally, we choose to model the players in our experiments as p.p.t. stateful algorithms.
These algorithms are fed explicit strategies when initialized; during each time step, the algorithm
can be queried to determine what messages, if any, should be sent during their messaging round.
For simplicity, we assume that during a player’s messaging round, the experiment orchestrator (or
the environment) runs the algorithm on all messages received since its last messaging round. The
algorithm then produces the message it wishes to send during the messaging round. The orchestrator
then delivers that message to the appropriate entity during the appropriate messaging round. During
a messaging round belonging to a corrupted player, the adversary instead chooses what message to
send on behalf of the corrupted player.

Ideal Experiment. In the Ideal experiment, the parties interaction is mediated through FzkAbacus.
At experiment initialization, each party is assigned a strategy as input that determines the messages
they will send.5 Then, the ideal p.p.t. adversary S corrupts an admissible set I ⊂ {C1, . . . , C`,M}.
Note that the special arbiter player J cannot be corrupted. The experiment proceeds as described
above: the players take turn sending messages to the ideal functionality, which will often react by
sending a message, possibly to a different player.

The adversary determines when the experiment ends. When the experiment ends, the players
that were not corrupted generate some output. Specifically, customers output tuples of the form
(cid , BC , BM) for each channel between them and the merchant that have not been closed, where
cid is the channel identifier, and (BC , BM) is the current balance in the channel. Additionally, the
customer outputs tuples of the same form for each closed channels, but include the closing balance for
channel instead. The merchant outputs tuples of the same form for each open channel, but includes
the initial balances of that channel instead. For each closed channel, the merchant outputs the same
tuple as the customer. For each message that the arbiter received during the experiment, it outputs
a tuple of the form (cid , {honest, dishonest}, BC , BM) corresponding to the values contained in that
message. Finally, the corrupt parties output nothing, but the adversary outputs any probabilistic
polynomial-time computable function of the corrupted parties’ views.

The output of the Ideal experiment, denoted by IdealFzkAbacus,S(z),I(λ,x, z), on input strategies
x, auxiliary input z to S, admissible set of corrupted parties I, and security parameter λ, consists of
the tuple of outputs of the honest parties and the adversary.

Real Experiment. In the Real experiment, the parties interact with each other to run the real
protocol ΠzkAbacus. At experiment initialization, each party is assigned a strategy as input that
determines the messages they will send. Then, the real adversary A corrupts an admissible set
I ⊂ {C1, . . . , C`,M}. Note that the special arbiter player J cannot be corrupted. The experiment
proceeds as described above: the players take turn sending messages to the ideal functionality, which
will often react by sending a message, possibly to a different player.

The adversary determines when the experiment ends. When the experiment ends, the players
that were not corrupted generate some output. Specifically, customers output tuples of the form
(cid , BC , BM) for each channel between them and the merchant that have not been closed, where
cid is the channel identifier, and (BC , BM) is the current balance in the channel. Additionally, the

5If randomness is required, random coins can be supplied as additional input

51

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

customer outputs tuples of the same form for each closed channels, but include the closing balance for
channel instead. The merchant outputs tuples of the same form for each open channel, but includes
the initial balances of that channel instead. For each closed channel, the merchant outputs the same
tuple as the customer. For each message that the arbiter received during the experiment, it outputs
a tuple of the form (cid , {honest, dishonest}, BC , BM) corresponding to the values contained in that
message. Finally, the corrupt parties output nothing, but the adversary outputs any probabilistic
polynomial-time computable function of the corrupted parties’ views.

The output of the Real experiment, denoted by RealΠzkAbacus,A(z),I(λ,x, z), on input strategies
x, auxiliary input z to A, admissible set of corrupted parties I, and security parameter λ, consists of
the tuple of outputs of the honest parties and the adversary.

Theorem 1. The protocol ΠzkAbacus securely realizes the ideal functionality FzkAbacus in the
presence of malicious adversaries. That is, for every p.p.t. real-world adversary A, there exist a
ideal-world p.p.t. adversary S such that for every admissible set of corrupted parties I{

IdealFzkAbacus,S(z),I(λ,x, z)
}
λ,x,z

c
≈
{
RealΠzkAbacus,A(z),I(λ,x, z)

}
λ,x,z

.

B.4. Proof. TODO NOTES

• Double check that we dont need to simulate the situation in which both the customer and
the merchant are corrupt. In particular, this would mean that we dont have to simulate the
case where the sim/merchant receives a FROZEN message during PAY.
• Customer Hybrid for ZK soundness?

B.4.1. Simulating a Customer. .

Setup. The simulator starts by sampling the merchant’s keypairs pk , sk and pk ′,sk ′ on its own.
Recall that we need not simulate the interactions between a corrupt client and a corrupt merchant,
as there is no private information between them. The simulator then initializes a signature table T
that maintains tuples of messages and signatures that it signs. This table is initialized as empty.

Simulating Initialization. When the customer starts the Initialize subprotocol on public inputs
pk , cid , BC0 , B

M
0 , the simulator forwards the request to the ideal functionality and runs the merchant

side of the protocol as appropriate. More formally, when the customer starts the Initialize subprotocol
on public inputs pk , cid , BC0 , B

M
0 , S does the following:

• If cid has already been used, S halts.
• S received the message A′, A′′, π from the customer.
• S checks that π verifies with respect to A′, A′′, cid , close, BC0 , and BM0 . If the verification

fails, S halts.
• Using the extractor of the NIZKPoK scheme, S extracts the witness to π as

(n0, rl0, τ0, τ0)

. If the extractor fails, S aborts with the error Errorextract
• S computes σ̃0 = ΠZKSig.BlindSign(sk ′M , A

′) and sends σ̃0 to the customer.
• S computes σ0 = ΠZKSig.Unblind(σ̃0, τ) and records (σ0, s̄0) in T .
• S updates S0 = S0 ∪ (cid , A′′)
• S sends (initialize-channel, cid , BC0 , B

M
0) to FzkAbacus, and receives (initialized, cid , Ci, B

0
C , B

0
M)

in response.

Simulating Activation. When the merchant activates a channel, FzkAbacus sends a notification
(activated, cid) to the simulator. S then executes the Activate subprotocol on public inputs (pk , cid),
playing the role of the merchant. More formally, when S receives (activated, cid) from FzkAbacus, S
does the following:

• S retrieves (cid , A′′) from S0.

• Generate and send p̃t0 = ΠZKSig.BlindSign(sk , A′′) to C

52

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

• S computes (pt0 = ΠZKSig.Unblind(p̃t0, τ0), and records (s0, pt0) in T .

Simulating Pay Offer. When the customer starts the Pay subprotocol on public inputs (pp, pk , ε),
the simulator runs the subprotocol with the customer to determine the malicious customer’s strategy.
More formally,

• S receives the message ni, π, A, A′, A′′ from the customer. S then performs the following
checks:

– If ni ∈ S1, S halts.
– If π does not verify, S halts.
– Using the extractor of the NIZKPoK scheme, S extracts the witness to π as

(cid , BCi , B
M
i , rl i,ni+1, rl i+1, τi+1, τ i+1, ρi, pt i)

. If the extractor fails, S aborts with the error Errorextract
– S check that an entry ((cid ,ni, rl i, B

C
i , B

M
i), pt i) exists in T . If not, S aborts with

the error Errorsign.
• S computes and sends σ̃i+1 = ΠZKSig.BlindSign(sk , A′) to the customer.
• S computes σi+1 = ΠZKSig.Unblind(σ̃i+1, τ i+1) and records (s̄i+1, σi+1) in T
• Upon receiving a message r̂l i, ˆrsi, ρ̂i from the customer in the same session, S performs

the following checks:
– If (rl i, ·) ∈ S2, S sends (pay-offered, cid , ε, dishonest) to FzkAbacus and halts.
– If Πcom.Decommit(A, rl i, ρi) 6= true, S send (pay-offered, cid , ε, dishonest) to FzkAbacus

and halts.
– If r̂l i 6= rl i extracted from π, S aborts with the error Errorbinding.
– If rl i 6= H(rsi), S sends (pay-offered, cid , ε, dishonest) to FzkAbacus and halts.

• S computes and sends p̃t i+1 = ΠZKSig.BlindSign(sk , A′′) to the customer.

• S computes pt i+1 = ΠZKSig.Unblind(p̃t i+1, τi+1) and records (cid , ni+1, rl i+1, B
C
i − ε, BMi +

ε, pt i+1) in T
• S sends (pay-offered, cid , ε, honest) to FzkAbacus

• S updates S′2 = S2 ∪ {(rl i, rsi)}

Simulating Closure. When the customer starts the closure subprotocol, S determines the index into
the states that the closure request represents. More formally, when S receives ((cid , close, rl i, B

C
i , B

M
i), σi),

S does the following:

• If ΠZKSig.Verify(pk , s̄i, σi) 6= true, S halts.
• If there is no entry ((cid , close, rl i, B

C
i , B

M
i), σi) in T , S aborts with an error Errorsign.

• FIGURE OUT THE INDEX and send (close, cid , index) to FzkAbacus.

B.4.2. Hybrid argument. .

We now show that real experiment and the ideal experiment are indistinguishable with a hybrid
argument, starting with the real world interaction. We denote the distribution of the real world
experiment to be H0.
H1 : Let H1 be the same as H0, but the merchant key pair (pk , sk) is sampled by S. Clearly H0

and H1 are distributed the same.
H2 : Let H2 be the same as H1, but S extracts the witness from π using the extractor. If

the extractor fails, S aborts with an error Errorextract. By definition, the extractor fails with only
negligible probability, and therefore the difference between H1 and H2 is negligible.
H3 : Let H3 be the same as H2, but S aborts with an error Errorbinding if the customer opens A

to a different value than is extracted from π. By the binding property of the commitment scheme,
the distance between H3 and H2 is negligible.
H4 : Let H4 be the same as H3, but S aborts with an error Errorsign if the customer attempts

to close using a signature σi that the S did not issue. By the unforagability property of the blind
signature scheme, the distance between H4 and H3 is negligible.

53

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

H5 : Let H5 be the same as H4, but S aborts with an error Errorsign if the signature pt i extracted
from π does not match any that the S did not issue. By the unforagability property of the blind
signature scheme, the distance between H5 and H4 is negligible.

We note that H5 is distributed the same as S presented above. Thus, we conclude this part of
the proof.

54

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

B.4.3. Simulating a Merchant. .

Setup. The simulator starts by initializing an empty table of rejected channels B. This table is
used to record when the merchant does not correctly initialize a channel. Additionally, the simulator
initializes an empty table of signatures produced by the merchant during channel activation, T .

Simulating Initialization. When a customer Ci initializes a channel with FzkAbacus, FzkAbacus sends
a notification (initialized, cid , Ci, B

C
0 , B

M
0) to the simulator. S then executes the Initialize subprotocol

on public inputs pk , cid , BC0 , B
M
0 , playing the role of the customer. More formally, when S receives

(initialized, cid , Ci, B
C
0 , B

M
0) from FzkAbacus, S does the following:

• If cid has already been used, S aborts with an error Errorcid.
• S generates the message A′, A′′, π as the honest customer would in the protocol, and sends

the message to the merchant.
• When S receives σ̃0 from the merchant, it performs the following checks:

– If σ̃0 /∈ Y, S records (cid , blocked) in B
– S computes σ0 = ΠZKSig.Unblind(σ̃0, τ). If ΠZKSig.Verify(pk , s̄0, σ0) 6= true, S records

(cid , blocked) in B
Simulating Activation. When the merchant starts the Activate subprotocol on public inputs
(pk , cid), the simulator forwards the activation request (activated, cid) to FzkAbacus. More formally,
when S starts the Activate subprotocol on public inputs (pk , cid), S does the following:

• If (cid , blocked) in B, S halts.

• When S receives p̃t0 from the merchant, it performs the following:

– Computes pt0 = ΠZKSig.Unblind(p̃t0, τ)
– If ΠZKSig.Verify(pk , s̄0, σ0) 6= true, S S records (cid , blocked) in B and halts.
– Adds (cid , σ0) (generated during initialization, above) to T .

• S sends (activated, cid) to FzkAbacus

Simulating Pay Offer Response. When the customer initiates pay, the S will receive the
notification (pay-offered,C[cid].pid , ε). S then executes the Pay subprotocol on public inputs (pp, pk , ε)
playing the role of the customer. More formally, when S received (pay-offered,C[cid].pid , ε), S does
the following:

• S samples a fresh nonce ni, a fresh revocation key pair rl i, rsi, and then computes A′ and
A′′ on arbitrary values. Additionally, S forms a commitment A to rl i under randomness ρi.
• S simulates the proof π
• S sends the message ni, π, A, A′, A′′ to the merchant.
• When S receives the message σ̃i+1 from the merchant, it performs the following checks:

– S computes σi+1 = ΠZKSig.Unblind(σ̃i+1, τ i+1)
– If ΠZKSig.Verify(pk , s̄i+1, σi+1) 6= true, S sends (pay-instr, pid , reject) to FzkAbacus and

halts.
• S sends rl i, rsi, ρi to the merchant.

• When S receives the message p̃t i+1 from the merchant, it performs the following checks:

– S computes pt i+1 = ΠZKSig.Unblind(p̃t i+1, τi+1)
– If ΠZKSig.Verify(pk , si+1, pt i+1) 6= true, S sends (pay-instr, pid , freeze-after-pay) to FzkAbacus

and halts.
• S sends (pay-instr, pid , honest-accept) to FzkAbacus and halts.

Simulating Closure. When an honest customer closes a channel, S receives a notification
(closed, cid , honest, BC , BM) from FzkAbacus. S needs to present a signed closure state to the merchant
for channel cid on the balances BC and BM . However, S is unlikely to have received a signature on
such a closing state. To retrieve such a signature, S rewinds the merchant to the last sucsessful run
of the pay protocols and substitutes the values cid , BC and BM in the closing state. More formally,
when S receives (closed, cid , honest, BC , BM) from FzkAbacus, S does the following:

55

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

• If there has been no successful runs of the pay protocol with the merchant:
– S retrieves (cid , σ0) from T .
– S sends ((cid , close, rl0, BC , BM), σ0) to the merchant and halts

• Otherwise, S rewinds the merchant to the most recent successful run of the pay protocol
with the merchant and does the following:

– S reruns the pay protocol with the merchant, but form the commitment A′ as a
commitment to the tuple s̄ = (cid , close, rl , BC , BM) where rl is freshly sampled by
running ΠRlock.KeyGen(). Denote the signature recovered from this run of the pay
protocol as σ.

– S runs the entire simulation forward. If at any point the merchant deviates from its
prior behavior, S aborts with the error Errorblindness

– S sends ((cid , close, rl0, BC , BM), σ) to the merchant

B.4.4. Hybrid argument. .

We now show that real experiment and the ideal experiment are indistinguishable with a hybrid
argument, starting with the real world interaction. We denote the distribution of the real world
experiment to be H0.
H1 : Let H1 be the same as H0, but S simulates the proof π in the pay subprotocol instead of

generating it honestly. By the zero-knowledge property of the NIZK, the difference between H0 and
H1 is negligible.
H2 : Let H2 be the same as H1, but S commits to arbitrary values in A, A′, A′′ instead of

honestly. By the hiding property of the commitment schemes, the difference between H1 and H2 is
negligible.
H3 : Let H3 be the same as H2, but S runs the blind signing protocol on the arbitrary contents

within the commitments A, A′, A′′. By the blindness property of the signature scheme, the blinded
version of the message reveals nothing about the message itself, and therefore the H2 and H3 are
distributed the same.
H4 : Let H4 be the same as H3, but instead of closing with signatures generated during regular

runs of the pay protocol, S instead generates closing signatures σ by rewinding the merchant to
the most recent successful run of the pay protocol and replacing the closing state with the desired
values. S then runs the protocol forward again. If the merchant deviates from its behavior before the
rewinding, S aborts with the error Errorblindness (As described above in the simulator, if there had
been no successful run of the pay protocol, S uses the closing signature produced during initialization).
By the blindness property of the signature scheme, the distribution of the changed message is the
same. Therefore, by the forking lemma, the distance between H3 and H4 is negligible.

We note that H4 is distributed the same as S presented above. Thus, we conclude this part of
the proof.

56

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

C. Draft ΠzkEscrowAgent ideal functionality

on (Register, cid , acct-idC , acct-idM , pkC , pkM , pk
′
M , B

C
0 , B

M
0) from P ∈ {M,C1, . . . , C`} :

if (∃J [cid]) return

Set J [cid] = (registered, P,B0
C , B

0
M , 0, unfunded, unfunded)

Record (Register, cid , P,BC
0 , B

M
0) and send it to all players

on (Fund, cid , role, σ) from P ∈ {M,C1, . . . , C`} :

if (@ J [cid]J [cid].status 6= registered) return

if (P = J [cid].C and J [cid].funded-statusC = unfunded) {

if (J [P] < J [cid].B0
C) return

Set J [P] −= J [cid].B0
C , J [cid].balance += B0

C

Set J [cid].funded-statusC = funded

} elif (P = M and J [cid].funded-statusM = unfunded) {

if (J [P] < J [cid].B0
M) return

Set J [P] −= J [cid].B0
M , J [cid].balance += B0

M

Set J [cid].funded-statusM = funded

}
if (J [cid].funded-statusC = funded and J [cid].funded-statusM = funded) {

Set J [cid].status = funded

}

on (Disburse, cid , BC , B
M , (rl , σZKSig, σ

C
Sig), (rs , σ

M
Sig)) from P ∈ {M,C1, . . . , C`} :

on (Expiry, cid , σM
Sig) from P ∈ {M,C1, . . . , C`} :

Figure C.2. Arbiter ideal functionality J .

57

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Assumes access to a table C indexed by cid with entries of the form

(status, C, ε, pid , cust-strat, states-list, aborted-pay-close)

on (Register, cid , BC
0 , B

M
0) from P ∈ {M,C1, . . . , C`} :

if (∃J [cid]) return

Set J [cid] = (registered, P,B0
C , B

0
M , 0, unfunded, unfunded)

Record (Register, cid , P,BC
0 , B

M
0) and send it to all players

on (Fund, cid) from P ∈ {M,C1, . . . , C`} :

if (@ J [cid]J [cid].status 6= registered) return

if (P = J [cid].C and J [cid].funded-statusC = unfunded) {

if (J [P] < J [cid].B0
C) return

Set J [P] −= J [cid].B0
C , J [cid].balance += B0

C

Set J [cid].funded-statusC = funded

} elif (P = M and J [cid].funded-statusM = unfunded) {

if (J [P] < J [cid].B0
M) return

Set J [P] −= J [cid].B0
M , J [cid].balance += B0

M

Set J [cid].funded-statusM = funded

}
if (J [cid].funded-statusC = funded and J [cid].funded-statusM = funded) {

Set J [cid].status = funded

}

on (Expiry, cid) from M :

if (@ J [cid] or J [cid].status 6= funded) return

Set J [cid].status = expiry

58

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

59

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

on (Disburse, cid , index) from P ∈ {M,C1, . . . , C`} :

if (@ J [cid] or P 6∈ {J [cid].C,M}) return

Retrieve state as (·, BC , BM) = C[cid].states-list[index]

// Mutual Close

if (P = J [cid].C and J [cid].status = funded and C[cid].status = closed){
Set J [J [cid].C] += BC , J [M] += BM , J [cid].balance −= (BC +BM)

Set J [cid].status = closed

}
// Honest Customer Initiated Close

elif (P = J [cid].C and J [cid].status = funded and index = C[cid].LAST){
Set J [M] += BM , J [cid].balance = 0

Set J [cid].timer = currentTime + δ

Set J [cid].status = closed,C[cid].status = closed

After δ time passes, set J [J [cid].C] += BC

}
// Dishonest Customer Initiated Close

elif (P = J [cid].C and P ∈ I and J [cid].status = funded and index < C[cid].LAST){
Set J [M] += BM , J [cid].balance −= BM

Set J [cid].timer = currentTime + δ

Set J [cid].status = pending

}
// Honest Customer Expiry Close

elif (P = J [cid].C and J [cid].status = expiry and index = C[cid].LAST){
Set J [M] += BM , J [cid].balance = 0

Set J [cid].timer = currentTime + δ

Set J [cid].status = closed,C[cid].status = closed

After δ time passes, set J [J [cid].C] += BC

}
// Dishonest Customer Expiry Close

elif (P = J [cid].C and P ∈ I and J [cid].status = expiry and index < C[cid].LAST){
Set J [M] += BM , J [cid].balance −= BM

Set J [cid].timer = currentTime + δ

Set J [cid].status = pending

}
// Merchant Dispute

elif (P = M and P ∈ I and J [cid].status = pending){
Set J [M] += J [cid].balance, J [cid].balance = 0

Set J [cid].status = closed

}
// Cashout

elif (J [cid].timer < currentTime and ((P = C and J [cid].status = pending})
or (P = M and J [cid].status = expiry)){

Set J [P] += J [cid].balance, J [cid].balance = 0

Set J [cid].status = closed

}
60

Ch : zkChannels Protocol Draft—not for distribution. Draft—not for distribution.

Modeling Communication and Players. The communication and player models are the same as
in Appendix B.

Ideal Experiment. In the Ideal experiment, the parties interaction is mediated through FzkEscrowAgent.
At experiment initialization, each party is assigned a strategy as input that determines the messages
they will send.6 Then, the ideal p.p.t. adversary S corrupts an admissible set I ⊂ {C1, . . . , C`,M}.
Note that the special arbiter player J cannot be corrupted. The experiment proceeds as described
above: the players take turn sending messages to the ideal functionality, which will often react by
sending a message, possibly to a different player.

The adversary determines when the experiment ends. When the experiment ends, the players
that were not corrupted generate some output. Specifically, customers output tuples of the form
(cid , BC , BM) for each channel between them and the merchant that have not been closed, where
cid is the channel identifier, and (BC , BM) is the current balance in the channel. Additionally, the
customer outputs tuples of the same form for each closed channels, but include the closing balance for
channel instead. The merchant outputs tuples of the same form for each open channel, but includes
the initial balances of that channel instead. For each closed channel, the merchant outputs the same
tuple as the customer. For each message that the arbiter received during the experiment, it outputs
a tuple of the form (cid , {honest, dishonest}, BC , BM) corresponding to the values contained in that
message. Finally, the corrupt parties output nothing, but the adversary outputs any probabilistic
polynomial-time computable function of the corrupted parties’ views.

The output of the Ideal experiment, denoted by IdealFzkEscrowAgent,S(z),I(λ,x, z), on input strategies
x, auxiliary input z to S, admissible set of corrupted parties I, and security parameter λ, consists of
the tuple of outputs of the honest parties and the adversary.

Real Experiment. In the Real experiment, the parties interact with each other to run the real
protocol ΠzkAbacus. At experiment initialization, each party is assigned a strategy as input that
determines the messages they will send. Then, the real adversary A corrupts an admissible set
I ⊂ {C1, . . . , C`,M}. Note that the special arbiter player J cannot be corrupted. The experiment
proceeds as described above: the players take turn sending messages to the ideal functionality, which
will often react by sending a message, possibly to a different player.

The adversary determines when the experiment ends. When the experiment ends, the players
that were not corrupted generate some output. Specifically, customers output tuples of the form
(cid , BC , BM) for each channel between them and the merchant that have not been closed, where
cid is the channel identifier, and (BC , BM) is the current balance in the channel. Additionally, the
customer outputs tuples of the same form for each closed channels, but include the closing balance for
channel instead. The merchant outputs tuples of the same form for each open channel, but includes
the initial balances of that channel instead. For each closed channel, the merchant outputs the same
tuple as the customer. For each message that the arbiter received during the experiment, it outputs
a tuple of the form (cid , {honest, dishonest}, BC , BM) corresponding to the values contained in that
message. Finally, the corrupt parties output nothing, but the adversary outputs any probabilistic
polynomial-time computable function of the corrupted parties’ views.

The output of the Real experiment, denoted by RealΠzkAbacus,A(z),I(λ,x, z), on input strategies
x, auxiliary input z to A, admissible set of corrupted parties I, and security parameter λ, consists of
the tuple of outputs of the honest parties and the adversary.

Theorem 2. The protocol ΠzkAbacus securely realizes the ideal functionality FzkEscrowAgent in the
presence of malicious adversaries. That is, for every p.p.t. real-world adversary A, there exist a
ideal-world p.p.t. adversary S such that for every admissible set of corrupted parties I{

IdealFzkEscrowAgent,S(z),I(λ,x, z)
}
λ,x,z

c
≈
{
RealΠzkAbacus,A(z),I(λ,x, z)

}
λ,x,z

.

C.1. Proof. We will write a proof here!

6If randomness is required, random coins can be supplied as additional input

61

	Chapter 1. Summary
	1.1. Overview of zkChannels

	Chapter 2. Cryptographic Building Blocks and Notation
	2.1. Preliminaries
	2.2. Pointcheval Sanders signatures

	Chapter 3. Off-Network and On-Network Subprotocols
	3.1. Assumptions and Notation
	3.2. Sessions
	3.3. Off-network Channel Protocol zkAbacus
	3.4. On-network Escrow and Disbursement Protocol zkEscrowAgent

	Chapter 4. zkChannels
	4.1. Preliminaries
	4.2. System set up
	4.3. Channel establishment
	4.4. Channel payments
	4.5. Channel closing
	4.6. Discussion
	4.7. Implementation overview

	Bibliography
	
	A. Proof Strategy Overview
	B. Draft zkAbacus ideal functionality
	C. Draft zkEscrowAgent ideal functionality

