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Abstract

Bitcoin owes it success to the fact that transactions are transparently recorded in the
blockchain, a global public ledger that removes the need for trusted parties. While Bitcoin
has achieved remarkable success, recording every transaction in the blockchain causes privacy,
latency, and scalability issues. Building on recent proposals for “micropayment channels” — two
party associations that use the ledger only for dispute resolution — we introduce techniques
for constructing anonymous payment channels. Our proposals allow for secure, instantaneous
and private payments that substantially reduce the storage burden on the payment network.
Specifically, we introduce three channel proposals, including a technique that allows payments
via an untrusted intermediary. Most importantly, each of our proposals can be instantiated
efficiently using well-studied techniques.

1 Introduction

Bitcoin has become increasingly popular as a decentralized electronic currency. In Bitcoin, each
transaction is recorded in the blockchain, a public transaction ledger maintained by a set of
decentralized peers. While this design has proven successful at low transaction volumes, the reliance
on a globally-shared ledger has raised serious concerns about scalability. Since in Bitcoin one
megabyte blocks area added to the blockchain every ten minutes on average, the Bitcoin transaction
rate is limited to fewer than ten new transactions per second across the entire Bitcoin user base [bit].
Several proposals to increase blockchain bandwidth are being debated in the Bitcoin community
today [blo16], but none are likely to produce a transaction rate that competes with centralized
services such as payment card networks.

A promising approach to the addressing the scaling problem is to move the bulk of Bitcoin
transactions off chain, while preserving the system’s decentralized structure and strong integrity
guarantees. The leading proposal for off-chain payments is to use payment channels, exemplified by
the Lightning Network [PD16] and Duplex Micropayment Channels [DW15]. Rather than posting
individual payment transactions to the blockchain, channels employ the blockchain to first establish
a shared deposit between two parties. The parties interact directly to make payments — adjusting
the respective ownership shares of the deposit — and communicate with the blockchain only to close
channels or to resolve disputes between the parties. In cases where no direct payment channel exists
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between two parties, these proposals also allow participants to route transactions via intermediate
peers [PD16]. The main benefit of the payment channel paradigm is that it dramatically reduces the
transaction volume arriving at the blockchain, without adding new trusted and centralized parties.

While payment channels offer a solution to the scaling problem, they suffer from some of the well-
known privacy weaknesses of Bitcoin [MPJ+13,RS13]. Although payments are conducted off chain,
any party may learn the pseudonymous identities and initial (resp. final) channel balances of the
participants. More critically, payment channels provide few privacy protections against transaction
counterparties. By establishing a channel to pay for e.g., Tor bandwidth or web content, a user
implicitly links each payment on a given channel to all of her other payments on this channel. This
is particularly problematic in the likely event that payments are routed via a common intermediate
peer — such as a currency exchange — since the intermediary must now be trusted to keep private
your full payment history. Some proposals, such as the Lightning Network, have proposed to work
around this problem by routing the payment via multiple intermediary nodes; however (as we discuss
in §6) this approach substantially increases the complexity of establishing payment channels, and
reveals payment information in the event that even a subset of the intermediaries collude.

Although several techniques have been proposed to address the privacy problems of Bitcoin-type
currencies [MGGR13, DFKP13, SCG+14], these solutions do not address the setting of payment
channels. This is due to channels’ pairwise structure. Even if a channel is funded with anonymous
currency, repeated payments within the same channel are inherently linkable. This is concerning,
given that one of the main proposed applications of channels is for web micropayments — which
are often described as a more private alternative to tracking and online behavioral advertising.
Finally, we stress that privacy concerns in Bitcoin are not just theoretical. Several commercial
ventures [Ell13,Blo14,Cha15] have been founded around the task of analyzing and tracing Bitcoin
transactions, potentially using auxiliary data gathered from exchanges.

Our Contribution. In this paper we propose Blind Off-chain Lightweight Transactions, or
Bolt. Bolt comprises of a set of techniques for constructing privacy-preserving unlinkable payment
channels for a decentralized currency. Our constructions enhance earlier work in privacy-preserving
decentralized payments [MGGR13,DFKP13,SCG+14] while addressing the problem of providing
fast and private off-chain transactions. Unlike earlier proposals [HBG16], which simply obfuscate
participant identities from intermediaries, our proposals create anonymous direct channels which are
amenable to secure and efficient dispute resolution even when a merchant does not know the identity
of the paying party. Of more practical interest, we present instantiations of our constructions that
can be built using highly efficient and well-studied cryptographic primitives — without the need for
costly zero-knowledge proof techniques such as zkSNARKs [SCG+14,PGHR13,Tow15]. We provide
three constructions:
Unidirectional payment channels. We first show how to construct unidirectional payment

channels in which a customer pays a merchant without revealing her identity or allowing the
merchant to link transactions conducted on the same channel. Our proposal uses the compact
e-cash paradigm introduced by Camenisch et al. [CHL05], but requires a number of new ideas
in order to work in the channel setting. Most critically, we propose a novel mechanism to
achieve succinct opening and closure, ensuring that the total bandwidth consumed on the
blockchain is constant, regardless of the number of transactions or the value exchanged on the
channel. By combining these channels with an anonymous underlying currency, this approach
yields fully anonymous off-chain transactions that can be used to pay for services such as web
browsing or bandwidth in anonymous networks.
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Bidirectional channels. We next show how to achieve bidirectional payment channels in which
payments can flow in either direction between a customer and merchant. These channels allow
parties to exchange arbitrary positive and negative values, and are useful in applications where
parties routinely provide refunds, or must exchange value in circumstances where the initiator
of the transaction is not necessarily the recipient of a payment. Our techniques use a signature
scheme with efficient protocols, of which there are several known instantiations [CL02,CL04,
BCKL08, BCC+08]. The challenge in our approach is to prevent a malicious counterparty
from using obsolete information to claim an earlier balance, while maintaining the anonymity
of the scheme.

Indirect channels. Finally, we show how our bidirectional payment channel can be used to
enable third party payments, where an untrusted intermediary acts as a “bridge” allowing two
otherwise unconnected parties to exchange value. Critically, the intermediary learns neither
the identity of the parties nor the amount transacted. The availability of this technique makes
anonymous payment channels usable in practice, since it reduces the number of open channels
(and hence committed funds) required between M parties to O(M) from O(M2).

We now provide the background and intuition for our constructions.

1.1 Background on Payment Channels

A payment channel is a relationship established between two participants in a decentralized ledger-
based currency network. For simplicity of exposition, we will refer to the parties as a merchant and
a customer, although we note that (in some constructions) payments may move in either direction
between these parties. We assume that the payment network includes a means to validate published
transactions and to resolve disputes according to public rules. In principle these requirements can
be satisfied by the scripting systems of consensus networks such as Bitcoin or Ethereum [eth].1

We note that our proposals focus on the privacy of payment channels, and not the privacy of
the underlying funding network. To anonymously fund payment channels, we recommend using a
privacy-preserving blockchain-based payment system such as Zerocash [SCG+14], although other
anonymity systems may suffice as well.

When two parties wish to open a channel, the parties first agree on the respective balance
shares of the channel, which we represent by non-negative integers Bmerch

0 and Bcust
0 . The parties

establish the channel by posting a payment to the network. Provided that these transactions
are correctly structured, the network places the submitted funds in escrow. The customer now
conducts payments by interacting off-chain with the merchant. For some positive or negative integer
payment amount εi, the ith payment can be viewed as a request to update Bcust

i := Bcust
i−1 − εi and

Bmerch
i := Bmerch

i−1 + εi, with the sole restriction that Bmerch
i ≥ 0 and Bcust

i ≥ 0. At any point, one or
both parties may request to close the channel by posting a channel closure message to the ledger.
If the closure messages indicate that the parties disagree about the current state of the channel,
the ledger executes a dispute resolution algorithm to determine the final channel balances. After a
delay sufficient to ensure each party has had an opportunity to contribute its closure message, the
parties may recover their final shares of the channel balance using an on-chain payment transaction.

Any payment channel must meet two specific requirements, which we refer to as universal
arbitration and succinctness:

1Our techniques require the network to verify a (blind) signature and several efficient non-interactive zero knowledge
proofs. Enabling this functionality would require extensions to the limited Bitcoin scripting language. The Ethereum
network, on the other hand, has a much richer scripting language, and could potentially perform these calculations.
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1. Universal arbitration. In the event that two parties disagree about the state of a shared
channel, the network can reliably arbitrate the dispute without requiring any private informa-
tion.

2. Succinctness. To make payments scalable, the information posted to the ledger must be
compact — i.e., it should not grow linearly with the balance of the channel, the number of
transactions or the amounts exchanged.

The latter property is essential for payment channels, since it rules out degenerate solutions that
result in a posted transaction for every offline payment, or that post the full off-chain payment
interaction to the ledger.

Anonymity for payment channels. Our goal in this work is to provide strong privacy for
payment channels. We now discuss what this implies. First, the nature of payment channels
implies that privacy cannot be absolute. Both participants must be aware that a channel has been
established or closed, and they must learn the initial (resp. final) value of the channel. Moreover,
we require that one party — in our setting, the customer — must be responsible for initiating
payments, and hence knows the instantaneous balance and payment history of its channel. Thus,
the anonymity guarantees provided by an anonymous payment channel can be described intuitively
as follows:

Upon receiving a payment from some customer, the merchant learns no information
beyond the fact that a valid payment (of some positive or negative value) has occurred
on an open channel. The network learns only that a channel of some balance has been
opened or closed.

These guarantees also extend to the case where payments are transmitted via an intermediary who
has open channels with the customer and merchant. In this case, we require that the intermediary
learns only the fact that a valid payment occurred between two users with open channels.

1.2 Overview of our constructions

In this work we investigate two separate paradigms for constructing anonymous payment chan-
nels. Our first construction builds on the electronic cash, or e-cash paradigm first introduced
by Chaum [Cha83] and extended in many subsequent works, e.g., [CFN90,Bra93,CHL05]. This
unidirectional construction allows for succinct payments of fixed-value tokens from a customer to
a merchant, while preserving the anonymity and functionality of a traditional payment channel.
Our second construction extends these ideas to allow for variable-valued payments that traverse the
channel in either direction (i.e., each payment may have positive or negative value), at the cost of a
more complex abort condition. Finally, we show how to extend our second construction to support
path payments where users pay anonymously via a single untrusted intermediate party.

We now present the intuition behind our constructions.

Unidirectional payment channels from e-cash. An e-cash scheme is a specialized protocol in
which a trusted party known as a bank issues one-time tokens (called coins) that customers can
redeem exactly one time. These protocols are a natural candidate for implementing a one-way
payment channel. Let us first consider a “strawman” proposal assuming some ideal e-cash scheme.
In this proposal, the merchant plays the role of the bank in order to issue a “wallet” of anonymous
coins to the customer, who then spends them back to the merchant. To close the channel, the

4



customer spends the remaining coins to herself and posts the evidence to the payment network. The
merchant can dispute the customer’s statement by providing evidence of a doubly-spent coin.

This strawman protocol suffers from several weaknesses. Most obviously, it is not succinct, since
closure requires the customer to post all of her unspent coins. Secondly, there is an issue of timing:
the merchant cannot issue a wallet to the customer until the customer’s funds have been escrowed
by the network, a process that can take from minutes to hours. At the same time, the customer
must be assured that she can recover her funds in the event that the merchant fails to issue her a
wallet, or aborts during wallet activation. Finally, to avoid customer “framing” attacks (in which a
merchant issues coins to itself and then accuses the customer of double-spending) we require an
e-cash scheme with a specific property called excuplability: namely, it is possible for any third party
(in our case the network) to distinguish “true” double spends — made by a cheating customer —
from false double-spends created by the merchant.

Intuition behind our unidirectional construction. To address the first concern, we begin with a
compact e-cash scheme [CHL05]. Introduced by Camenisch et al, this is a form of e-cash in which
B separate coins can be generated from a constant-sized wallet stored at the customer (here B is
polynomial in the wallet size). While compact e-cash reduces the wallet storage cost, it does not
immediately give rise to a succinct closure mechanism for our channels. The key innovation in our
construction is a new mechanism that reduces channel closure to a single fixed-size message — at
the cost of some increased (off-chain) interaction between the merchant and customer.

To create a payment channel in our construction, the customer first commits to a set of secrets
used to formulate the wallet. These are embedded within a succinct wallet commitment that
the customer transmits to the payment network along with the customer’s escrow funds (and an
ephemeral public signature verification key pk c). The customer and merchant now engage in an
interactive channel establishment protocol that operates as follows. The customer first generates B
coin spend transactions, and attaches to each a non-interactive zero knowledge proof that each coin
is tied to the wallet commitment. She then individually encrypts each of the resulting transactions
using a symmetric encryption scheme such that each ciphertext Ci embeds a single spend transaction,
along with the decryption key for ciphertext Ci+1. After individually signing each of the resulting
ciphertexts using her secret key, the customer transmits the signed results to the merchant for
safekeeping. A critical aspect of this scheme is that the customer does not need to prove that any
ciphertext is well-formed.

When the customer wishes to close an active channel with remaining balance N (for 0 < N ≤ B),
she computes j = (B −N) + 1 and posts a signed message (channel ID, j, kj) to the network, with
kj being the decryption key for the jth ciphertext. The merchant can use this tuple to decrypt each
of the ciphertexts Cj , . . . , CN and thus detect further spending on the channel. If the customer
cheats by revealing an invalid decryption key, if any ciphertext that decrypts to an invalid coin, or
if the resulting transactions indicate that she has double-spent any coin, the merchant can post
indisputable evidence of this cheating to the network — which, to punish the customer, grants the
full channel balance to the merchant.

Bidirectional payment channels. A restriction on the previous construction is that it is
unidirectional: all payments must flow from the customer to the merchant. While this is sufficient
for many useful applications — such as micropayments for web browsing — some applications of
payment channels require payments to flow from the merchant to the customer. As we further
discuss below, a notable example of such an application is third party payments, where two parties
send funds via an intermediary, who must increase the value of one channel while decreasing the
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other.
For these applications, we propose a second construction that combines techniques from existing

(non-anonymous) payment channels with blind signatures and efficient zero-knowledge proofs. As in
the existing payment channel systems [PD16,DW15], the customer and merchant first on agree on
an initial channel state, with the customer holding Bcust

0 escrowed funds, and the merchant provides
a signature on this balance. When the customer wishes to pay the merchant an arbitrary positive
or negative amount ε, she conducts an interactive protocol to (1) prove knowledge of the previous
signature on the current balance Bcust

i−1 , and (2) demonstrate that she possesses sufficient balance to
complete the payment. She then (3) blindly extracts a new signed refund token from the merchant
containing the updated balance Bcust

i = Bcust
i−1 − ε. At any point, the customer may post her most

recent signature to the blockchain to redeem her available funds.
The main challenge in this approach is to prevent a dishonest customer from retaining and using

earlier versions of her refund token on channel closure. To prevent this, during each payment, the
customer interacts with the merchant to present a revocation token for the previous state. As long
as the customer behaves honestly, this revocation token can never be linked to the channel or to any
previous transactions. However, if the customer misbehaves by posting an obsolete refund token,
the merchant can instantly detect this condition and present the revocation token to the network as
proof of the customer’s malfeasance – in which case, the network awards the balance of the channel
to the merchant. Unlike the e-cash approach, this proposal suffers from the possibility that one of
the parties will abort the protocol early; we address this by using the network to enforce fairness.

From direct to third-party payments. As the concluding element of our work, we show how
a bidirectional payment channel can be used to construct third-party payments, in which a first
party A pays a second party B via a common, untrusted intermediary I to which both parties
have previously established a channel. In practice, this capability eliminates the need for parties to
maintain channels with all of their peers. The key advantage of our proposal is that the intermediary
I cannot link transactions to individual users, nor — surprisingly — can they learn the amount being
paid in a given transaction. Similarly, even if I is compromised, it cannot claim any transactions
passing through it. This technique makes anonymous payment channels usable in practice, provided
there is exists a highly-available (untrusted) intermediary to route the connections. We provide the
full details of our construction in §4.3.

Aborts. Our unidirectional protocol provides privacy guarantees that are similar to the underlying e-
cash protocol, with the obvious (and necessary) limitation that final channel balances are revealed on
closure. Payments between a customer and merchant are non-interactive and completely anonymous.
The bidirectional payment construction, on the other hand, provides a slightly weaker guarantee:
by aborting during protocol execution, the merchant can place the customer in a state where she is
unable to conduct future transactions. This does not prevent the merchant from resorting to the
network to close the channel, but it does raise concerns for anonymity in two ways:

1. The merchant can arbitrarily reduce the anonymity set by (even temporarily) evicting other
users through induced aborts.

2. The merchant may link a user to a repeating sequence of transactions by aborting the user in
the middle of the sequence.

For many traditional commerce settings, the consequences of such aborts may be minimal: no matter
the payment mechanism, the merchant can fail to deliver the promised goods and the customer
will almost certainly abort. For other settings, such as micropayments, these possibilities should be
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considered. In such settings customers should scan the network for premature closures and abort the
channel if the number of open channels with a customer falls below their minimal anonymity set.

1.3 Outline of this paper

The remainder of this paper proceeds as follows. In §2 we present definitions for anonymous payment
channels. In §3 we present the building blocks of our scheme. In §4 we describe the protocols for
our payment channel constructions, and in §5 we present concrete instantiations of these protocols.
Finally, in §6 we discuss the related work.

2 Definitions

Notation: Let λ be a security parameter. We write P (A(a),B(b))→ (c, d) to indicate a protocol
P run between parties A and B, where a is A’s input, c is A’s output, b is B’s input and d is B’s
output. We will define ν(·) as a negligible function. We will use valmax to denote the maximum
balance of a payment channel, and denote by the set of integers {εmin, . . . , εmax} the range of valid
payment amounts.

2.1 Anonymous Payment Channels

An Anonymous Payment Channel (APC) is a construct established between two parties that interact
via a payment network. In this section we first describe the properties of an anonymous payment
channel scheme, which is a collection of algorithms and protocols used to establish these channels.
We then explain how these schemes can be used to construct channels in a payment network. We
now provide a formal definition of an APC scheme.

Definition 2.1 (APC scheme) An anonymous payment channel scheme consists of a tuple of
possibly probabilistic algorithms (KeyGen, InitC , , InitM,Refund,Refute,Resolve) and two interactive
protocols (Establish,Pay). These are defined in Figure 1. For completeness we also define an optional
function Setup(1λ) to be run by a trusted party for generating the parameters pp, e.g., a Common
Reference String. In some instantiations the CRS is not required. In this case, we set pp := 1λ.2

Using Anonymous Payment Channels. An anonymous payment channel scheme must be used
in combination with a payment network capable of conditionally escrowing funds and binding these
escrow transactions funds to some data (as exemplified by e.g., the Bitcoin ledger.) We now describe
how these algorithms and protocols are used to establish a channel on a payment network.

To instantiate an anonymous payment channel, the merchant M first generates a long-lived
keypair (pkM, skM)← KeyGen(pp) that will identify it to all customers. The merchant initializes
its state S← ∅. A customer C generates an ephemeral keypair (pkC , skC) for use on a single channel.
The customer and merchant agree on their respective initial channel balances Bcust

0 , Bmerch
0 . They

now perform the following steps:

1. Each party executes the InitC algorithm on the agreed initial channel balances, in order to
derive the channel tokens TC ,TM.

2. The two parties transmit these tokens to the payment network along with a transaction to
escrow the appropriate funds.

2Looking forward to our recommended instantiations in §5, we propose to use a CRS based on public randomness.
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Key generation and channel initialization algorithms:

KeyGen(pp). This algorithm generates a keypair (pk , sk) for use by each customer or merchant.
InitP(pp, Bcust

0 , Bmerch
0 , pk , sk). For P ∈ {C,M} this algorithm is run by each party prior to opening a

channel. On input the initial channel balances, public parameters and the party’s keypair, the
InitC algorithm outputs the party’s channel token TP and a corresponding secret cskP .

Two-party protocols run between a customer C and a merchant M:

Establish({C(pp,TM, cskC)}, {M((pp,TC , cskM)}. On input public parameters and each of the initial
channel tokens, the Establish protocol activates a channel between two parties who have previously
escrowed funds. If the interaction succeeds, the merchant receives established and the customer
receives a wallet w. Either party may receive the distinguished failure symbol ⊥.

Pay({C(pp, ε, wold)}, {M(pp, ε,Sold)}). On input parameters, a payment amount ε, and a wallet wold

from a customer, and the merchant’s current state Sold (initially ∅) from the merchant: the customer
receives a payment success bit RC and new wallet wnew if the interaction succeeded. The merchant
receives a payment success bit RM and an updated state Snew if the interaction succeeded.

Channel closure and dispute algorithms, run by the customer and merchant respectively:

Refund(pp,TM, cskC , w). On input a wallet w, outputs a customer channel closure message rcC .
Refute(pp,TC ,S, rcC). On input the merchant’s current state Sold and a customer channel closure

message, outputs a merchant channel closure message rcM and an updated merchant state Snew.

Dispute resolution algorithm, run by the network:

Resolve(pp,TC ,TM, rcC , rcM). On input the customer and merchant’s channel tokens TC ,TM, along
with closure messages rcC, rcM (where either message may be null), this algorithm outputs the
final channel balance Bmerch

final , B
cust
final.

Figure 1: Definition of an Anonymous Payment Channel scheme.

3. Once the funds have been verifiably escrowed, the two parties run the Establish protocol to
activate the payment channel. If the parties disagree about the initial channel balances, this
protocol returns ⊥ and the parties may close the channel.

4. If channel establishment succeeds, the customer initiates the Pay protocol as many times as
desired, until one or both parties close the channel.

5. If the customer wishes to close the channel, she runs Refund and transmits rcC along with the
channel identifier to the payment network.3

6. The merchant runs Refute on the customer’s closure token to obtain the merchant closure
token rcM.

At the conclusion of this process, the network runs the Resolve algorithm to determine the final
channel balance and allows each party to collect the determined share of the escrowed funds.

2.2 Correctness and Security

We now described the correctness and security of an anonymous payment channel scheme. Here we
provide intuition, and present formal definitions in Appendix A.

Correctness. Informally, an APC scheme is correct if for all correctly-generated parameters pp

3Here we assume that channel closure is initiated by the customer. In cases where the merchant wishes to initiate
channel closure, it may transmit a special message to the network requesting that the customer close the channel.
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and opening balances Bcust
0 , Bmerch

0 ∈ {0, . . . valmax}, every correct (and honest) interaction following
the paradigm described above always produces a correct outcome. Namely, each valid execution
of the Pay protocol produces success, and the final outcome of Refute correctly reflects the final
channel balance.

Security. The security of an Anonymous Payment Channel scheme is defined in terms of three
games, which we refer to as payment anonymity and balance. We now provide an informal description
of each property, and refer the reader to Appendix A for the formal definitions.

Payment anonymity. Intuitively, we require that the merchant, even in collaboration with a set of
malicious customers, learns nothing about a customer’s spending pattern beyond the information
that is available outside of the protocol. In our anonymity definition, which extends a definition
of Camenisch et al. [CHL05], the merchant interacts either with either (1) a series of oracles
implementing the real world protocols for customers C1, . . . , CN , or (2) with a simulator S that
performs the customer’s part of the Pay protocol. In the latter experiment, we assume a simulator
that has access to side information not normally available to participants in the real protocol, e.g.,
a simulation trapdoor or control of a random oracle. We require that the simulator has the ability
to simulate any customer without access to the customer’s wallet, and without knowing the identity
of the customer being simulated. Our definition holds if no adversary can determine whether she is
in world (1) or (2). We stress that this definition implies anonymity because the simulator has no
information about which party it is simulating.

Balance. The balance property consists of two separate games, one for the merchant and one for the
customer. In both cases, assuming honest execution of the Resolve protocol, this property ensures
that no colluding set of adversarial counterparties can extract more value from a channel than
justified by (1) the part’s initial channel funding, combined with (2) the set of legitimate payments
made to (or by) the adversary. Because the merchant and customer have different interfaces, we
define this property in terms of two slightly different games. In each game, the adversarial customer
(resp. merchant) is given access to oracles that play the role of the merchant (resp. customer), and
allows the parties to establish an arbitrary number of channels with chosen initial balances. The
adversary may then initiate (resp. cause the other party to initiate) the Pay protocol repeatedly on
adversarially-chosen payment amounts ε. Finally, the adversary can initiate channel closure with
the counterparty to obtain channel closure messages rcC , rcM. The adversary wins if the output of
the Resolve protocol is inconsistent with the total value funded and paid.

3 Technical Preliminaries

In this section we recall some basic building blocks that we will use in our constructions.

Commitment schemes. Let Πcommit = (CSetup,Commit,Decommit) be a commitment scheme
where CSetup generates public parameters; on input parameters, a message M , and random coins r,
Commit outputs a commitment C; and Decommit on input parameters and a tuple (C,m, r) outputs
1 if C is a valid commitment to the message, or 0 otherwise. In our instantiations, we recommend
using the Pedersen commitment scheme [Ped92] based on the discrete logarithm assumption in a
cyclic group.

Symmetric encryption schemes. Our constructions require an efficient symmetric encryption
scheme as well as a one-time symmetric encryption scheme. We define a symmetric encryption
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scheme Πsymenc = (SymKeyGen, SymEnc, SymDec) where SymKeyGen outputs an `-bit key. We also
make use of a one-time encryption scheme Πotenc = (OTKeyGen,OTEnc,OTDec). In practice, the
encryption scheme can be implemented by encoding the plaintext as an element in a cyclic group
G and multiplying by a random group element. In either case, our constructions require that the
schemes provide IND-CPA security.

Pseudorandom Functions. Our unidirectional construction requires a pseudorandom function
(PRF) F that supports efficient proofs of knowledge. For our purposes it is sufficient that the PRF
be secure for a poly-size input space. In addition to the standard pseudorandomness property,
ourprotocols require that the PRF should also possess a property we refer to as strong pre-image
resistance. This property holds that, given access to an oracle implementing the function Fs(·) for
a random seed s, no adversary can find an input point x and a pair (s′, x′) in the domain of the
function such that Fs(x) = Fs′(x

′) except with negligible probability. We propose to instantiate F
using the Dodis-Yampolskiy PRF [DY05], the public parameters are a group G of prime order q with
generator g. The seed is a random value s ∈ Zq and the function is computed as fs(x) = g1/(s+x)

for x in a polynomially-sized set. We show in Appendix D that the Dodis-Yampolskiy PRF satisfies
the strong pre-image resistance property.

Signatures with Efficient Protocols. Our schemes make use of a signature scheme Πsig =
(SigKeygen, Sign,Verify) with efficient protocols, as proposed by Camenisch and Lysyanskaya [CL02].
These schemes feature: (1) a protocol for a user to obtain a signature on the value(s) in a commitment
without the signer learning anything about the message(s), and (2) a protocol for (non-interactively)
proving knowledge of knowledge of a signature. Several instantiations of these signatures have been
proposed in the literature, including constructions based on the Strong RSA assumption [CL02] and
various assumptions in bilinear groups [BCKL08,CL04]. For security, we assume that all signatures
satisfy the property of existential unforgeability under chosen message attack (EU-CMA).

Non-Interactive Zero-Knowledge Proofs. We use several standard results for non-interactively
proving statements about committed values, such as (1) a proof of knowledge of a committed value,
and (2) a proof that a committed value is in a range. When referring to the proofs above, we will use
the notation of Camenisch and Stadler [CS97]. For instance, PoK{(x, r) : y = gxhr ∧ (1 ≤ x ≤ n)}
denotes a zero-knowledge proof of knowledge of integers x and r such that y = gxhr holds and
1 ≤ x ≤ n. All values not in enclosed in ()’s are assumed to be known to the verifier. Our protocols
require a proof system that provides simulation extractability, which implies that there exists an
efficient proof extractor that (under specific circumstances, such as the use of a simulation CRS)
can extract the witness used by an adversary to construct a proof, even when the adversary is also
supplied with simulated proofs. In practice we can conduct these proofs non-interactively using a
variety of efficient proof techniques [BCKL08,Sch91,CDS94,Bra97,CNS07,GS,CC+08,Bou00,Gro06].

4 Protocols

In this section we present our main contribution, which consists of three protocols for implementing
anonymous payment channels. Our first protocol in §4.1 is a unidirectional payment channel based
on e-cash techniques. Our second construction in §4.2 allows for bidirectional payments, with a
more complex protocol for handling aborts. Finally, in §4.3 we propose an approach for third-party
payments, in which two parties transmit payment via an intermediary.
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4.1 Unidirectional payment channels

Our first construction modifies the compact e-cash construction of Camenisch et al. [CHL05] to
achieve efficient and succinct unidirectional payment channels. We now provide a brief overview of
this construction.

Compact e-cash. In a compact e-cash scheme, a customer withdraws a fixed-size wallet capable
of generating B coins. The customer’s wallet is based on a tuple (k, sk , B): k is an (interactively
generated) seed for a pseudorandom function F , sk is the customer’s private key, and B is the
number of coins in the wallet. Once signed by the merchant, this wallet can be used to generate
up to B coins as follows: the ith coin consists of a tuple (s, T, π) where s is a “serial number”
computed as s = Fk(i); T is a “double spend tag” computed such that, if the same coin is spent
twice, the double spend tags can be combined to reveal the customer’s key pk (or sk); and π is a
non-interactive zero-knowledge proof of the following statements:

1. 0 < i ≤ B
2. The prover knows sk .
3. The prover has a signature on the wallet (k, sk , B).
4. The pair (s, T ) is correctly structured with respect to the signed wallet.

This construction ensures that double spending is immediately detected by a verifier, since both
transactions will share the serial number s.4 The verifier can then recover the spender’s public
key by combining the double-spend tags. At the same time, the individual coin spends cannot
be linked to each other or to the user. Camenisch et al. [CHL05] show how to construct the
proof π efficiently using signatures and proof techniques secure under the Strong RSA or bilinear
assumptions in the random oracle model. Subsequent work presents efficient proofs in the standard
model [BCKL08,BCKL09].

Achieving succinct closure. Let us recall our intuition for using compact e-cash in a unidirectional
payment channel (see §1.2). In this proposal, the merchant plays the role of the bank and issues
the customer a wallet of B coins, which she can then (anonymously) spend back to the merchant.
To close a channel, the customer simply spends any unused coins “to herself”, thus proving to the
merchant that she retains no spending capability on the channel (since any subsequent attempt to
spend those coins would be recognized by the merchant as a double spend). Unfortunately while
compact e-cash provides a succinct wallet, this does not immediately lead to a succinct protocol for
closing the channel — as the customer cannot simply reveal the wallet secrets without compromising
the anonymity of previous coins spent on the channel. We require a mechanism to succinctly reveal
only a fraction of the coins in a wallet, without revealing them all. At the same time, we wish to
avoid complex proofs (e.g., a proving cost that scales with O(B)).5

Our approach is to use the merchant to store the necessary information to verify channel closure.
This requires a number of changes to the compact e-cash scheme of Camenisch et al. [CHL05]

4In the original compact e-cash construction [CHL05], the key k was generated using an interactive protocol
between the customer and bank, such that honest behavior by one party ensured that k was uniformly random. In
our revised protocol below, k will be chosen only by the customer. This does not enable double-spending, provided
that the PRF is deterministic and the proof system is sound.

5Indeed, an alternative proposal is to construct the coin serial numbers using a chained construction, where each si
is computed as a one-way hash of the key used in the previous transaction. This would allow the customer to revoke
the channel by posting a secret from one transaction. Unfortunately, proving the correctness of si using standard
zero-knowledge techniques would then require O(B) proving cost, and moreover, does not seem easy to accomplish
using the efficient zero knowledge proof techniques we recommend in this work.
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(requiring a fresh analysis of the scheme, which we provide in §4.1.1). First, we design the
customer’s InitC algorithm so that the PRF seed k is generated solely by the customer, rather
than interactively by the customer and the bank (merchant) as in [CHL05]. The customer now
commits to the wallet secrets, producing wCom, and embeds this into the customer’s channel
token TC := (wCom, pk c) where pk c is a signature verification key. During the Establish protocol
to obtaining the merchant’s signature on wCom, the customer provides the merchant with a series
of signed ciphertexts (C1, . . . , CB), each of which contains a coin spend tuple of the form (s, T, π′)
where π′ is identical to the normal compact e-cash proof, but simply proves that s, T are correct
with respect to wCom (which is not yet signed by the merchant). These ciphertexts are structured
so that a key revealed for the jth ciphertext will also open each subsequent ciphertext.

The key feature of this approach is that the merchant does not need to know if these ciphertexts
truly contain valid proofs at the time the channel is opened. To reveal the remaining j coins in a
channel, the customer reveals a key for the jth ciphertext, which allows the merchant to “unlock”
all of the remaining coin spends and verify them with respect to the commitment wCom embedded
in the customer’s channel token. If any ciphertext fails to open, or if the enclosed proof is not valid,
the merchant can easily prove malfeasance by the customer and obtain the balance of the channel.
This requires only symmetric encryption and a means to “chain” symmetric encryption keys – both
of which can easily be constructed from standard building blocks.6 Our schemes additionally require
a one-time encryption algorithm OTEnc where the keyspace of the algorithm is also the range of
the pseudorandom function F .

We now present the full scheme:

Setup(1λ). On input λ, optionally generate CRS parameters for (1) a secure commitment scheme
and (2) a non-interactive zero knowledge proof system. Output these as pp.

KeyGen(pp). Compute (pk , sk)← Πsig.SigKeygen(1λ).7

InitC(pp, B
cust
0 , Bmerch

0 , pkc, skc). On input a keypair (pkc, skc), uniformly sample two distinct PRF
seeds k1, k2 and random coins r for the commitment scheme. Compute wCom = Commit(skc,
k1, k2, B

cust
0 ; r). For i = 1 to B, sample cki ← SymKeyGen(1λ) to form the vector ~ck. Output

TC = (wCom, pkc) and cskC = (skc, k1, k2, r, B
cust
0 , ~ck).

InitM(pp, Bcust
0 , Bmerch

0 , pkm, skm). Output TM = pkm, cskM = (skm, B
cust
0 ).

Refund(pp,TM, cskC , w). Parse w (generated by the Establish and Pay protocols) to obtain ~ck
and the current coin index i. Compute σ ← Sign(skc, refund‖cID‖i‖cki) (where cID uniquely
identifies the channel being closed) and output rcC := (cID, i, cki, σ).

Refute(pp,TC ,S, rcC). Parse the customer’s channel closure message rcC as (cID, i, cki, σ) and verify
cID and the signature σ. If the signature verifies, then obtain the ciphertexts Ci, . . . , CB stored
after the Establish protocol. For j = i to B, compute (j‖sj‖uj‖πrj‖ckj‖σ̂j)← SymDec(ckj , Cj)
and verify the signature σ̂j and the proof πrj . If (1) the signature σ̂j or the proof πrj fail to
verify, (2) any ciphertext fails to decrypt correctly, or (3) any of the decrypted values (sj , uj)
match a valid spend containing (sj , tj) in S where OTDec(uj , tj) = pkc: record the invalid
result into rcM along with cID and sign the result using skm so that it can be verified by
the network. Otherwise set rcM = (accept) and sign with skm. Finally for each valid Cj , set
S← S ∪ (sj , tb, π) and output S as the new merchant state.

Resolve(pp,TC ,TM, rcC , rcM). Parse the customer and merchant closure messages and verify all

6For example, the necessary properties can be achieved using a secure commitment scheme and any secure symmetric
encryption mechanism.

7For simplicity of exposition, we assume that pk can be derived from sk
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signatures. If any fail to verify, grant the balance of the channel to the opposing party. If
rcC = (N, skN , σ) and rcM = accept then set Bcust

final to (Bcust
0 −N) + 1. Otherwise, evaluate

the merchant closure message to determine whether the customer misbehaved. If so, assign
the merchant the full balance of the channel.

We present the Establish and Pay protocols in Figure 2.

4.1.1 Security Analysis

Theorem 4.1 The unidirectional channel scheme satisfies the properties of anonymity and balance
under the assumption that (1) F is pseudorandom and provides strong pre-image resistance, (2) the
commitment scheme is secure, (3) the zero-knowledge system is sound and zero-knowledge, (4) the
signature scheme is existentially unforgeable under chosen message attack and signature extraction is
blind, and (5) the symmetric encryption and one-time encryption scheme are each IND-CPA secure.

We present a proof of Theorem 4.1 in Appendix B.

4.2 Bidirectional payment channels

The key limitation of the above construction is that it is unidirectional, and only supports payments
from a customer to a merchant. Additionally, it supports only fixed-value coins. In this section we
describe a construction that enables bidirectional payment channels which feature compact closure,
compact wallets, and allow a single run of the Pay protocol to transfer arbitrary values (constrained
by a maximum payment amount).

In this construction the customer’s wallet is structured similarly to the previous construction: it
consists of Bcust

0 , and a random wallet public signature key wpk. The wallet is activated when the
merchant provides a blind signature on its contents. Signed wallets are obtained as in the previous
protocol, with a commitment being placed in the anchor transaction and signing happening once the
transaction is confirmed. However, instead of conducting the payment ε using a series of individual
coins, the customer and the merchant simply exchange an existing signed wallet worth Bcust for
a new signed wallet worth Bcust − ε (and embedding a fresh wallet public key wpknew). Notice
that in this construction ε can be positive or negative. The customer uses a zero knowledge proof
and signatures with efficient protocols to prove that the contents of the new requested wallet are
constructed properly, that the balances of the new wallet differs from the original balance by ε, and
that (Bcust − ε) ≥ 0. At the conclusion of the transaction, the customer reveals wpkold to assure
the merchant that this wallet cannot be spent a second time. The old wallet in invalidated by the
customer signing a “revoked” message with wsk the corresponding private key. Closing the channel
consists of the customer posting a valid wallet signed by the merchant to the blockchain.

The challenge in this construction is to simultaneously invalidate the existing wallet and sign
the new one. If the merchant signs the new wallet before the old wallet is invalidated, then the
customer can retain funds in the old wallet while continuing to use the new one. On the other hand,
if the merchant can invalidate the old wallet before signing the new one, the customer has no way
to close the channel if the merchant refuses to sign the new wallet.

To solve this, we separate the wallet — used in interactive payments — from the value that
is posted to perform channel closure and use a two phase protocol to obtain each of these values.
Instead of revealing the most recent wallet w, C closes the channel using a refund token rt which
contains Bcust, the current wallet’s public key, and a signature by the merchant. In phase one of
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Customer(pp,TM, cskC) Establish Merchant(pp,TC , cskM)

1. Parse cskC as (pkc, skc, k1, k2, r, B). Sample sk0 ∈ {0, 1}`.
2. Generate a proof π1 that

PK{(skc, k1, k2, r) : wCom = Commit(skc, k1, k2; r)

∧ (pkc, skc) ∈ KeyGen(1λ)}
3. For j = 1 to B:

(a) Compute sj ← Fk1(j), uj ← Fk2(j), πrj where

πrj = PK{(skc, k1, k2, r) : s = Fk1(j) ∧ u = Fk2(j)

∧ wCom = Commit(skc, k1, k2; r)

∧ (pkc, skc) ∈ KeyGen(1λ)}
(b) Compute an internal signature σ̂j =

Sign(skc, spend‖j‖sj‖uj‖πrj‖ckj+1).
(c) Compute Cj = SymEnc(ckj , j‖sj‖uj‖πrj‖σ̂j‖ckj+1) and

an external signature σj = Sign(skc, coin‖j‖Cj).

wCom, π−−−−−−−−−−−−−→
(C1,σ1,...,CB ,σB)

σw←−−−−−−−−−→

Verify the signature on TC , and check that Bcust
0 = B. Verify π1 and

for i = 1 to B, verify the signature σj on Cj . If any check fails, abort
and output ⊥. Otherwise, interact with the customer to provide a
blind signature σw on the contents of wCom.

Return w = (sk0, skc, k1, k2, r, B, σw, 1). Return established.

Customer(pp, ε, wold) Pay Merchant(pp, ε,Sold)

1. Parse wold as (sk0, skc, k1, k2, r, B, σw, i). Abort if i ≥ B.
2. Compute s← Fk1(i), t← OTEnc(Fk2(i), pkc), and a proof:

π = PK{(pkc, skc, k1, k2, r, i, σw) : s = Fk1(i) ∧ 0 < i ≤ B
∧ t = OTEnc(Fk2(i), pkc)

∧ Verify(pkm, (k1, k2, skc), σw)

∧ (pkc, skc) ∈ KeyGen(pp) }

(s, t, π)
−−−−−−−→

Verify π and that (s, ·, ·) /∈ S. If so, set S ← S ∪ (s, t, π) and set
RM ← 1 , else set RM ← ⊥.

Return wnew := (sk0, skc, k1, k2, r, B, σw, i+ 1). Return RM.

Figure 2: Establishment and Payment protocols for the Unidirectional Payment Channel scheme.
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Customer(pp,TM, cskC) Establish Merchant(pp,TC , cskM)

1. Parse cskC to obtain (wCom, wpk, wsk, r, Bcust
0 ).

2. Generate a proof π1 of the following statement:

PK{(wpk,wsk, r) : wCom = Commit(wpk,Bcust
0 ; r)

∧ (wpk,wsk) ∈ KeyGen(pp)}

π1−−−−−−−−−→

σw←−−−−−−−−−→

Parse TC to obtain Bcust
0 ,wCom. Verify that the proof π1 is valid. If

not, terminate and output ⊥, If the proof is valid: interact with the
customer to provide a blind signature σw under skm on the contents
of wCom.

Return w := (Bcust
0 , wpk, wsk, r, σw). Return established.

Customer(pp, ε, wold) Pay Merchant(pp, ε,Sold)

1. Parse wold as (B,wpk,wsk, r, σw).
2. Sample (wpk′, wsk′)← KeyGen(pp) and sample random coins r′.
3. Generate wCom′ ← Commit(wpk′, B−ε; r′) and formulate the proof:

π2 = PK{(wpk′, B, r′, σw) : wCom′ = Commit(wpk′, B − ε; r′)
∧ Verify(pkm, (wpk,B), σw) = 1

∧ 0 ≤ (B − ε) ≤ valmax }

ε,wCom′, wpk, π2−−−−−−−−−−−−−→

rtw′
←−−−−−−−−−→

Verify π2, ensure that (wpk, ·) /∈ S and εmin ≤ ε ≤ εmax. If these
conditions do not hold, abort and output ⊥. Otherwise set Snew :=
Sold ∪ {(wpk,⊥)}. If ε < 0, RM ← 1 otherwise RM ← ⊥. Interact
with the customer to provide a partially blind signature rtw′ under
skm on the message (refund‖wpk′‖B− ε), where wpk′ and B− ε are
the contents of wCom′.

Compute Verify(pkm, rtw′ , refund‖wpk′‖B − ε). If verification fails,
or if this message does not arrive, abort and output rtw′ . Else
compute σrev = Sign(wsk, revoke‖wpk).

σrev−−−−−−−−−−−→

σw′
←−−−−−−−−−→

Verify that Verify(wpk, revoke‖wpk, σrev) = 1. If so, set Snew :=
Sold ∪ {(wpk, σrev)} and RM ← 1. Interact with the customer to
generate a blind signature σw′ on the contents of wCom′ using skm.
If this completes, set RM ← 2

return wnew := (B − ε, wpk′, wsk′, r′, σw′) return Snew, RM

Figure 3: Establishment and Payment protocols for the Bidirectional Payment Channel scheme.
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A I B

commitment to a new wallet and a proof πB that the updated balance is greater by ε
Step 1

commitment to ε, A & B’s new wallet commitments, proofs πA, πB
Step 2

refund token for A, conditional refund token for B
Step 3

revocation token for A, conditional refund token for B
Step 4

revocation tokens for A & B’s old wallets
Step 5

signature for B’s new walletsignature for A’s new wallet
Step 6

Figure 4: Outline of our third-party payments protocol. In practice, A can route all messages from
B to I.

Pay, the customer first obtains a signature on the refund token blindly from M. In the second phase,
the customer invalidates the old wallet, and then the merchant signs the new wallet. If the merchant
refuses to sign the new wallet, the customer can safely close the channel using rt.

We now describe the revised scheme. The protocols Establish and Pay are presented in Figure 3.
The Setup and InitM algorithms are identical to the previous construction.

KeyGen(pp). Compute (pk , sk)← Πsig.SigKeygen(1λ).
InitC(pp, B

cust
0 , Bmerch

0 , pkc, skc). The customer generates the wallet commitment by sampling
random coins r, computing an ephemeral keypair (wpk,wsk)← KeyGen(pp) and producing a
commitment wCom = Commit(wpk,Bcust

0 ; r). It outputs:

TC = (pkc,wCom) cskC = (wCom, skc, wpk, wsk, r, B
cust
0 )

InitM(pp, Bcust
0 , Bmerch

0 , pkm, skm). Output TM = pkm, cskM = (skm, B
cust
0 ).

Refund(pp,TM, cskC , w). If the customer has not yet invoked Pay protocol, setm := (refundUnsigned, (wpk,
B), r), where r is drawn from cskC . Otherwise set m := (refundToken, (wpk,B), rtw). Compute
σ = Sign(skc,m). Output rcC = (m,σ).

Refute(pp,TC ,S, rcC). Parse TC to obtain pkc. Parse rcC as (m,σ) and compute Verify(pkc,m, σ).
If this signature verifies, parse m as ( , (wpk,B), ). If S contains (wpk, σrev) then output
rcM = ((revoked, σrev), σ) where σ is a valid signature on the message (revoked, σrev) under
skm. Otherwise set Snew := Sold ∪ {(wpk,⊥)}

Resolve(pp,TC ,TM, rcC , rcM).
Let Btotal = Bcust

0 +Bmerch
0 . If rcC is ⊥, terminate and output Bcust

final = 0 and Bmerch
final = Btotal. If

both rcC and rcM are ⊥, terminate and output ⊥. If the algorithm did not terminate, perform
the following steps:

1. Parse TC to obtain (pkc,wCom), and parse TM to obtain pkm.
2. Parse and validate rcC as follows. First, parse rcC as (m,σ) and check that Verify(pkc,m,
σ) = 1 and return ⊥ if this fails. Parse m as (type, (wpk,B),Token).

3. Parse and validate rcM: Parse rcM as (m,σ) and check that Verify(pkm,m, σ) = 1, else
return ⊥. Parse m as (revoked, σrev,

4. Perform the following checks:
(a) Check the refund’s validity: If type is refundUnsigned, check that wCom = Commit(wpk,

B,Token), Otherwise type is refundToken, so check that Token is a valid refund token
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on wpk,B. If either check fails, return (0, v) (i.e. pay the full channel balance to the
merchant)

(b) Check the refutation’s validity: and check Verify(wpk, revoke‖wpk, σrev) = 1. If so,
return (0, v), otherwise return (B, v − B) (i.e. pay the claimed B to C and the
remainder to M)

4.2.1 Security Analysis

As we noted in §1.2, the main limitation of the bidirectional protocol is the possibility that a
malicious merchant may abort the protocol. The nature of the protocol ensures that a customer is
not at risk of losing funds due to such an abort, since she may simply provide her refund token rtw′

to the blockchain in order to recover her balance. The main limitation therefore is to the customer’s
anonymity. A malicious merchant can place a customer into a situation where she cannot continue
to spend, and must close her channel. This implicitly links the payment to the channel – a matter
that is of only limited concern, if the channel is funded with anonymous currency.

Of more concern is the possibility that a malicious merchant will use aborts to reduce the
anonymity set of the system, by causing several channels to enter a non-functional state. In practice,
this attack will produce a visible signal at the payment network, allowing customers can use to halt
payments. However, within the context of our security proof we address this in a simpler way, by
simply preventing the adversarial merchant from aborting during the Pay protocol.

Theorem 4.2 The bidirectional channel scheme satisfies the properties of anonymity and balance
under the restriction that the adversary does not abort during the Pay protocol, and the assumption
that (1) the commitment scheme is secure, (2) the zero-knowledge system is simulation extractable
and zero-knowledge, (3) the blind signature scheme is existentially unforgeable under chosen message
attack, and (4) the one time signature scheme is existentially unforgeable under one time chosen
message attack.

We include a proof of Theorem 4.2 in Appendix C.

4.3 Bidirectional Third Party Payments

One of the main applications of the bidirectional construction above is to enable third party payments.
In these payments, a first party A makes a payment of some positive value to a second party B via
some intermediary I with whom both A and B have open channels. In this case, we assume that
both A and B act as the customer for channel establishment, and I plays the role of the merchant.
Our goal is that I does not learn the identities of the participants, or the amount being transferred
(outside of side information she can learn from her channel state), nor should she trusted to safeguard
the participants’ funds. This construction stands in contrast to existing non-anonymous payment
channel schemes [PD16,DW15] where given the chain A→ I→ B, the intermediary always learns
both the amount and the participants.

The challenge in chaining payment channels is to make the payments atomic. That is, the payer
A only wants to pay the intermediary I once I has paid the recipient B. But of course this places
the intermediary at risk if A fails to complete the payment. Similarly, the payer risks losing her
funds to a dishonest intermediary. There is no purely cryptographic solution to this problem, since
it’s in essence fair exchange — a problem that has been studied extensively in multi-party protocols.
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However, there are known techniques for using blockchains to mediate aborts [BK14,ADMM14].
This is our approach as well.

Recall from §4.2 that the Pay protocol occurs in two phases. The first portion is an exchange of
refund tokens that can be used to reclaim escrowed funds. The second phase generates an anonymous
wallet for subsequent payments. For a chained transaction from A→ I→ B to be secure, we need
only ensure that the first phase of both legs completes or fails atomically.

We accomplish this by adding conditions to the refund tokens. These conditions are simple
statements for the network to evaluate on examining a token during the Resolve protocol. Specifically,
to prevent the recipient B from claiming funds from I if the payer A has not delivered a corresponding
payment to I, we introduce the following conditions into B’s refund token:

1. B must produce a revocation message (i.e. a signature using A’s wsk) on A’s previous wallet.
2. A has not posted a revocation token containing wsk to the ledger.

By condition (1), once B forces a payment on I → B, A → I cannot be reversed since I has the
revocation token. By condition (2) if A→ I has been already been reversed, B cannot force the
payment I→ B since wpk is already on the ledger.

Hiding the payment amount. Our third-party payment construction also provides an additional
useful feature. Since I acts only a passive participant in the transaction and does not maintain state
for either channel, there is no need for for I to learn the amount being paid. Provided that both
A and B agree on an amount ε (i.e., both parties have sufficient funds in each of their channels),
neither party need reveal ε to I: I need merely be assured that the balance of funds is conserved.

To hide the payment amount, we must modify the proof statement used to construct π2 from the
Pay protocol of Figure 3. Rather than revealing ε to the merchant, the customer A now commits to
ε and uses this value as a secret input in computing the payment. Simultaneously, in the payment
protocol conducted to adjust B’s wallet, B now proves that his wallet has been adjusted by −ε.

To do this, we change the proof in the pay protocol to one that binds ε to a commitment but
does not reveal it:

π2 = PK{(wpk′,B, r′, σw, ε, rε) :

wCom′ = Commit(wpk′, B − ε; r′)
∧ Verify(pkm, (wpk,B), σw) = 1

∧ vCom = Commit(ε, rε)

∧ 0 ≤ (B − ε) ≤ valmax }

A can then prove to I that the two payments cancel or (if fee is non-zero), leave B with fee extra
funds via a proof:

πε = PK{(εA, εB, rεA , rεB) :vComεA = Commit(εA; rεA)

∧vComεB = Commit(εB; rεB)

∧εA < εmax ∧ −εB < εmax

∧εA + εB = fee

The protocol. We now combine the process of updating both A and B’s wallet into a single

protocol flow, which we outline in Figure 4. In detail, the steps are as follows:
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1. B commits to ε and conducts the first move of the variable payment Pay protocol (Figure 3)
(with the modified balance-hiding proof described above) and sends a commitment to its new
wallet state wCom′b, proof of correctness for the wallet, πB, and commitment randomness to
A.

2. A completes it’s own first move, generating wCom′a, πA and additionally computes πA attesting
to the correct state of its original wallet and new wallet commitment. It sends these and B’s
new wallet commitment and πA to I.

3. I, after validating the proofs, issues A a refund token for its new wallet rtw′
a

and B a conditional

refund token crtσ
wa
rev

w′
b

as its new wallet. This token embeds the condition that B must producing

a revocation token for A’s old wallet.
4. A completes its second move in the variable payment Pay protocol to generate σwa

rev the

revocation token for its old wallet. It sends that and the crtσ
wa
rev

w′
b

to B.

5. B completes its second move to generate σwb
rev the revocation token for its old wallet. After

validating that it now has a valid refund token by verifying σwa
rev, it sends σwa

rev, σ
wb
rev to I.

6. I completes the remaining moves of the variable payment Pay protocol with A and B
individually, giving each a blind signature on their new wallets.

Security and abort conditions. We omit a complete security analysis of this protocol. A
challenge in this construction is the possibility that a malicious I can selectively abort the protocol
during a transaction. This does not allow I to steal funds, but it does force A and B to transmit
messages to the network in order to recover their funds. This potentially links the payment attempt
to A and B’s channels. Unfortunately, this seems fundamentally difficult to avoid in an interactive
protocol.

We note that the anonymity threat is limited in practice by the fact that the channels themselves
can be funded with an anonymous currency (e.g., [MGGR13,DFKP13,SCG+14]), so linking two
separate channels does not reveal the participant identifiers. More importantly, since the intermediary
can use this abort technique only once per channel, there is no possibility for the merchant to
link separate payments on the same channel. Finally, an intermediary who performs this abort
technique will produce public evidence on the network, which allows participants to avoid the
malicious intermediary.

4.4 Hiding Payment Balances

Each of the constructions presented above has a privacy limitation: the balance of each payment
channel is revealed when a channel is closed. While individuals can protect their identities and initial
channel balances by using an anonymous currency mechanism to fund channels, the information
about channel balances leaks useful information to the network. We note, however, that in the case
of non-disputed channel closure, even this information can be hidden from the public as follows.
On channel closure, the customer posts a commitment to the final channel balance, along with
a zero-knowledge proof that she possesses a valid channel closure token (ı.e., a signature on the
channel balance in our bidirectional construction). In systems such as Zerocash [SCG+14], the final
payment redeeming coins to the merchant and customer can be modified to include an additional
statement: the amounts paid in this transaction are consistent with the commitment, and do not
exceed the initial funding transaction that created the channel. We leave the precise details of such a
construction to future work.
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5 Concrete Instantiations

In practice, we expect that our anonymous payment channel constructions will be deployed on
top of a payment network that already supports decentralized anonymous payments. One option
for this network is the Zerocash [SCG+14] system, although other systems based on coin mixing
may also be sufficient. Such networks are currently under commercial development. We note
that aside from the requirement of anonymous funding, our protocols cannot be instantiated in
unmodified Bitcoin: Bitcoin’s scripting language is too limited to evaluate efficient blind signatures,
(most) commitment schemes, or the proofs needed in the incremental channel scheme. However,
new contract networks such as Ethereum [eth] offer an extensible platform on top of which these
protocols could be instantiated. Alternatively, simple extensions can be added to existing payment
networks for verifying zero knowledge proofs and signatures.

Our payment channel schemes require a signature scheme with efficient protocols, as well
as an appropriate PRF supporting zero-knowledge proofs. For an efficient instantiation of the
unidirectional e-cash based scheme, we refer the reader to the work of Camenisch et al. [CHL05] and
Belenkiy et al. [BCKL09]. These works show how to instantiate compact e-cash efficiently using
bilinear groups, efficient number-theoretic PRFs and signatures with efficient protocols.

A concrete instantiation of the bidirectional payment scheme requires a commitment scheme,
a signature scheme with efficient protocols for obtaining a blind signature, and a zero-knowledge
proof system for the following statements:

1. That two committed integers differ by a public value.
2. That the prover knows a signature on the values in a commitment.
3. That a committed integer is in a public range.

Each of these components can be instantiated efficiently with fast primitives and zero knowledge
proofs that require minimal computation for proving and overhead. We refer the reader to [BCKL08,
Sch91, CDS94, Bra97, CNS07, GS, CC+08, Bou00] for more details on the proof techniques. We
recommend using Pedersen commitments and a signature scheme based on bilinear pairings such
as the scheme of Camenisch [CL04]. In this scheme, signature generation and proving require
fewer than 20 group operations for each operation, with an average cost of ≤ 1 millisecond per
operation (see [BGDM+10]) on a 128-bit secure Barreto–Naehrig elliptic curve.

We note that these primitives are fast enough that the protocol will be at least two 2 orders
of magnitude faster than the zkSNARK proofs used in Zerocash [SCG+14]. These proofs require
more bandwidth than the Zerocash zkSNARKs do, but they are only posted to the blockchain (in
the unidirectional protocol) when the parties engage in a dispute. They are never posted to the
blockchain in the bidirectional payment protocol.

6 Related Work

Anonymity and scaling for Bitcoin. A number of works have proposed additional privacy
protections for Bitcoin. Zerocoin, Zerocash and similar works [MGGR13,SCG+14] provide strong
anonymity through the use of complex zero knowledge proofs. A separate line of works seek
to increase anonymity by Bitcoin by mixing transactions (e.g. CoinJoin [Max13], CoinShuffle,
CoinSwap). Like Bitcoin, each of these constructions require that all transactions are stored on
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the blockchain. Finally, recent work has proposed probabilistic payments as an alternative payment
mechanism [Ps15].

Privacy in payment channels Heilman et al. [HBG16] propose a type of on-blockchain anonymous
transactions, and a construction for off-chain payments. These schemes require only a blind signature
protocol, making them easy to deploy in Bitcoin. However, the off-chain protocol does not provide
for an anonymous payment channel between two parties. Instead, it offers a way for the parties to
protect their identities from intermediaries in an existing non-anonymous micropayment channel
network. Finally, their scheme (like our first proposal) is based on e-cash tokens and does not allow
for the efficient transfer of variable amounts.

Lightning anonymity limitations. The Lightning Network [PD16] does not provide payment
anonymity between pairs of channel participants – i.e., a merchant can see the channel identity of
every customer that initiates a payment. However, the protocol includes some limited anonymity
protections for path payments. These operate on a principle similar to an onion routing network,
by using multiple non-colluding intermediaries to obscure the origin and destination of a path.
Unfortunately this proposal suffers from collusion problems: given the chain A→ I1 → I2 → I3 → B,
only I1 and I3 must collude to recover the identities of A and B, since all transactions on the path
share the same Hash Timelock Contract ID. Moreover, this security mechanism assumes there exist
a network with sufficient path diversity for these protections to be viable. The practical viability of
path routing in the Lightning payment network is a subject of some debate given the large amount
of funds that would be tied up in maintaining open channels [Rat16,Pac15]. It seems more likely
that deployed channels will rely on a star topology where clients and merchants interact via a one
of a handful of highly-available parties, which is the situation we address in our constructions.

7 Conclusion

In this work we showed how to construct anonymous payment channels between two mutually
distrustful parties. Our protocols can be instantiated using efficient cryptographic primitives with no
trusted third parties and (in many instantiations) no trusted setup. Payments of arbitrary value can
be conducted directly between the parties, or via an intermediate connection who learns neither the
participants identities nor the amount involved. Coupled with an decentralized anonymous payment
scheme for funding the channels, they provide for private instantaneous anonymous payments
without a trusted bank.

We leave two main open problems. The first is to investigate the necessary details for extending
the third party payment protocol to support arbitrary paths consisting of n > 3 parties. Second, we
did not consider the problem of performing payment resolution (in the event of a dispute) without
revealing the final channel balance to the network.
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A Security Definitions

In this section we provide formal security definitions for an anonymous payment channel scheme.

A.1 Payment anonymity

Let A be an adversary playing the role of merchant. We consider an experiment involving P
“customers”, each interacting with the merchant as follows. First, A is given pp, then outputs TM.
Next A issues the following queries in any order:

Initialize channel for Ci. When A makes this query on input Bcust, Bmerch, it obtains the

commitment TiC , generated as (TiC , csk
i
C)

R← InitC(pp, B
cust, Bmerch).
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Establish channel with Ci. In this query, A executes the Establish protocol with Ci as:

Establish({C(pp,TM, cskiC)}, {A(state)}
Where state is the adversary’s state. Let us denote the customer’s output as wi, where wi
may be ⊥.

Payment from Ci. In this query, if wi 6= ⊥, then A executes the Pay protocol for an amount ε
with Ci as:

Pay({C(pp, ε, wi)}, {A(state)})
Where state is the adversary’s state. We denote the customer’s output as wi, where wi may
be ⊥.

Finalize with Ci. When A makes this query, it obtains the closure message rciC, computed as

rcC
R← Refund(pp, wi).

We say that A is legal if A never asks to spend from a wallet where wi = ⊥ or where wi is
undefined, and where A never asks Ci to spend unless the customer has sufficient balance to complete
the spend. We further restrict A to establishing a single channel with each customer.

Let auxparams be an auxiliary trapdoor not available to the participants of the real protocol.
We require the existence of a simulator SX−Y (·)(pp, auxparams, ·) such that for all TM, no allowed
adversary A can distinguish the following two experiments with non-negligible advantage:

Real experiment. In this experiment, all responses are computed as described above.
Ideal experiment. In this experiment, the Commitment, Establishment and Finalize queries are

handled using the procedure described abvove. However, in the Payment query, A does not
interact with Ci but instead interacts with SX−Y (·)(pp, auxparams, ·).

As in [CHL05] we note that this definition preserves anonymity because the simulator S does
not know the identity of the user i for which he is spending the coin.

A.2 Payment Balance

A interacts with a collection of P honest customers C1, . . . , CP and Q honest merchantsM1, . . . ,MQ.
Initialize the counters balA ← 0, claimedA ← 0. Let pp← Setup(1λ). For each merchant i ∈ [1, Q],
at the start of the game let (pkMi

, skMi) ← KeyGen(pp). Give pp and (pkM1
, . . . , pkMQ

) to A.
Now A may issue the following queries in any order:

Initialize channel for Ci (resp. Mi) When A makes this query on input (Pi, Bcust
0 , Bmerch

0 ), it
obtains the commitment TCi (resp. TMi) computed as follows:

• If the party Pi is a customer: First compute (pkCi , skCi)← KeyGen(pp), then (TCi , csk
i
C)

R←
InitC(pp, B

cust
0 , Bmerch

0 , pkCi , skCi). Set balA ← balA +Bmerch
0 .

• If the party Pi is a merchant: Compute (TMi , cskMi)
R← InitM(pp, Bcust

0 , Bmerch
0 , pkMi

, cskiM).
Set balA ← balA +Bcust

0 .

Establish channel with Ci (resp. Mi). When A specifies (Pi,TA), and A has previously
initialized a channel with party Pi, execute the Establish protocol with Ci (resp. Mi) using
the following input:
• If Pi is a customer: Establish({Ci(pp,TA, cskiC)}, {A(state)} → wi (or ⊥).
• If Pi is a merchant: Establish({A(state)}, {M(pp,TA, csk

i
M)} → established (or ⊥).

Where state is the adversary’s state.

24



Payment from Ci (resp. to Mi). In this query, A specifies (Pi, ε) where ε may be positive or
negative. If A has previously conducted the Establish protocol with this party and the party’s
output was not ⊥, then execute the Pay protocol with A as:
• If Pi is a customer: Pay({Ci(pp, ε, wi)}, {A(state)}) → wi (or ⊥). If the customer’s

output is not ⊥, set balA ← balA + ε.
• If Pi is a merchant: Pay({A(state)}, {Mi(pp, ε,Si)}) → Si (or ⊥). If the merchant’s

output is not ⊥, balA ← balA − ε.
Where state is the adversary’s state.

Finalize with Ci (resp. Mi) When A makes this query on input Pi and optional input rcM, if
it has previously established a channel with Pi, it obtains a closure message as:
• If Pi is a customer: if A has previously established a channel with Pi and has not

previously Finalized on this party, compute rcC
R← Refund(pp, wi), store rcC , and return

rcC to A.
• If Pi is a merchant: if A has previously established a channel with Pi and has not

previously Finalized on this party, compute rcM
R← Refute(pp,Si, rcC).

If the adversary provided rcM and rcC is stored, compute (Bcust
final, B

merch
final ) ← Resolve(pp,TC ,

TM, rcC , rcM) and update claimedA ← claimedA +B
merch (resp. cust)
final .

We say that A is legal if A never asks to spend from a wallet where wi = ⊥ or where wi is
undefined, and where A never asks Ci to spend unless the customer has sufficient balance to complete
the spend. We further restrict A to establishing a single channel with each customer. We say that
A wins the game if at the conclusion of A’s queries, we have claimedA > balA.

B Proof of Theorem 4.1

Proof. The proof of Theorem 4.1 requires two separate arguments: (1) that the scheme satisfies the
anonymity property and (2) that the scheme satisfies the balance property. We begin by addressing
anonymity.

B.1 Anonymity

To prove that the scheme satisfies the anonymity property, we must describe a simulator SX−Y (·)(pp,
auxparams, ·) such that for all TM, no allowed adversary A can distinguish the Real experiment
from the Ideal experiment with non-negligible advantage. Recall that in the Ideal experiment (as
in the Real experiment), when the adversary A queries on channel initialization, establishment or
closure, the customer answers these queries by honestly running the appropriate algorithms. When
the adversary triggers a customer to initiate the Pay protocol, in the Real experiment the adversary
runs the protocol honestly. In the Ideal experiment, the customer’s side of the protocol is conducted
by S.

For all allowed adversaries A, the simulator S operates as follows. First, if required by the
zero-knowledge proof system, we generate a simulation CRS for the zero-knowledge proof system,
and embed this in pp.8 When A calls the simulator on a legal transaction, the simulator emulates
the customer’s side of the Pay protocol, but with the following changes. First, for j = 1 to B, the
simulator S employs the ZK simulation algorithm to simulate each of the zero knowledge proofs π.

8This is necessary for certain proof systems such as [GS].
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It generates si by sampling a random element in the range of F . Finally, it samples a random key
k′ for the one-time encryption scheme, samples a random public key pk ′ by running the KeyGen
algorithm, and sets t := OTEnc(k′, pk ′).

To prove that the Real and Ideal experiments are indistinguishable, we will begin with Real
experiment, and modify elements via a series of games until we arrive at the Ideal experiment
conducted using our simulator S. Let ν1, . . . , ν3 be negligible functions. For notational convenience,
let Adv [ Game i ] be A’s advantage in distinguishing the output of Game i from Game 0, i.e.,
the Real distribution.

Game 0. This is the real experiment.
Game 1. In this game, each NIZK π issued during the Pay protocol is simulated. If the proof

system is zero-knowledge, then Adv [ Game 1 ] ≤ ν1(λ).
Game 2. In this game, each serial number s presented toA in the Pay protocol, and each encryption

key k used to construct the value t, is replaced with a random value in the range of the pseudo-
random function F . In Lemma B.1 we show that if the F is a PRF, the commitment scheme is
hiding, and the committing encryption is IND-CPA, then Adv [ Game 2 ]−Adv [ Game 1 ]
≤ ν2(λ).

Game 3. In this game, each value t presented to A in the Pay protocol is constructed by sampling
a random (pk′c, sk

′
c)← KeyGen(1λ), then encrypting pk′c. Under the assumption that OTEnc

is IND-CPA for a unique, random key k, then Adv [ Game 3 ]−Adv [ Game 2 ] ≤ ν3(λ).

By summation over the individual hybrids, we have that Adv [ Game 3 ] is negligible in the security
parameter. Since the distribution of Game 3 is identical to the Ideal experiment conducted with
our simulator S, this concludes the main proof. We now sketch proofs of the remaining Lemmas.

Lemma B.1 (Replacement of the s, kt values.) For all p.p.t. distinguishers A the distribution
of Game 1 (in which each value s, t is generated as in the real protocol) is computationally
indistinguishable from the distribution of Game 2 (in which each s and the key kt used to encrypt
t is a random element) if (1) F is a PRF, (2) the wallet commitment scheme is hiding, and (3) the
committing symmetric encryption scheme (SymEnc, SymDec) is IND-CPA secure.

Proof sketch. Let A be an allowed adversary that outputs 1 with non-negligibly different probability
when playing Game 2 and Game 1. We use A to construct three separate distinguishers B1,B2,B3
where at least one of the following is true: (1) B1 distinguishes the PRF F from a random function
with non-negligible advantage, (2) B2 succeeds against the IND-CPA security of the committing
symmetric encryption scheme (SymEnc, SymDec) with non-negligible advantage, or (3) B3 succeeds
against the hiding property of the commitment scheme with non-negligible advantage.

Let us define a series of intermediate hybrids H0 = Game 1, . . . ,HP = Game 2, and in each
Hybrid i = 1 to P , the output of the Pay protocol for a single customer Ci is modified in the
manner of Game 2. Given an allowed adversary A that distinguishes Game 1 from Game 2
with non-negligible probability, there must exist an adversary A′ that for some i ∈ {1, . . . , P},
distinguishes one pair of hybrids Hi and Hi−1 with non-negligible probability. Given such an
adversary we now define several more hybrids, and argue that for each of these hybrids the adversary
A must distinguish each from the previous hybrid with at most negligible probabilty.

I.1 Replace the proof π1 issued by Ci during the Establish protocol with a simulated
proof. If the proof system is zero knowledge, then A’s advantage in distinguishing this hybrid
from the previous hybrid is negligible in λ.
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I.2 Replace wCom with a commitment to random values k′1, k
′
2. If an adversary distin-

guishes this hybrid from the previous with non-negligible advantage, then this implies a
distinguisher B3 that succeeds with non-negligible advantage against the hiding property of
the commitment scheme. Since we assume the commitment scheme is secure, this bounds
the difference between the hybrids to be negligible in λ. (Note that the NIZK proof π1 is
simulated and thus independent of wCom and k′1, k

′
2.)

I.3 Replace each s, kt in the Pay protocol with a value computed using k′1, k
′
2. If an

adversary distinguishes this hybrid from the previous hybrid with non-negligible advantage,
then by Lemma B.2 this implies an attacker against B2 that wins the IND-CPA game with
non-negligible advantage against (SymEnc, SymDec). Since we assume the encryption scheme
to be IND-CPA secure, this bound the difference between the hybrids to be negligible in λ.
(Recall that the NIZK proof generated in the Pay protocol is simulated.)

I.4 Replace each s, kt in the Pay protocol with a random element in the range of F . If
an adversary distinguishes this hybrid from the previous hybrid with non-negligible advantage,
then this implies the existence of B1 that distinguishes F from a random function, hence
under the assumption that F is a PRF, this bounds the difference between the hybrids to be
negligible in λ.

I.5 Replace the commitment wCom and proof π1 with the original distribution from
Game 2. Under the assumption that the proof system is zero-knowledge, and the commitment
scheme is hiding, the difference between this hybrid and the previous is negligible in λ.

Note that the final hybrid is identical to Game 2. Under the assumptions that the proof system is
zero knowledge, that F is a PRF, the committing encryption scheme is IND-CPA secure, and the
commitment scheme is hiding, the difference between A’s probability of outputting 1 in Game 2
and Game 1 is negligible in λ. 2

Lemma B.2 (Replacement of the wallet secrets.) For all p.p.t. adversaries A no adversary
can distinguish the intermediate hybrid I.2 from hybrid I.3 with non-negligible probability if
(SymEnc,SymDec) is IND-CPA secure.

Proof sketch. Let A be an allowed adversary that outputs 1 with non-negligibly different probability
in hybrid I.2 from hybrid I.3. We show that A implies an adversary B2 such that B2 succeeds in the
IND-CPA game against the encryption scheme (SymEnc, SymDec) with non-negligible advantage.
We now describe this adversary.

If A′ distinguishes I.2 from hybrid I.3 with non-negligible advantage, we construct B2 that
succeeds with non-negligible advantage against the LOR-CPA security of the symmetric encryption
scheme (a definition that is equivalent to IND-CPA security [BDJR97]). B2 begins with the
distribution of I.2 and first picks a random integer J ∈ {0, . . . , B} and for d = 1 to J : queries
the LOR encryption oracle on the pair (sd‖ud‖πrd, s′d‖u′d‖π′rd ) where the left input is structured as
in I.2 and the right input is structured as in I.3. Given the resulting ciphertexts C1, . . . , CJ , A1

now generates the remaining ciphertexts C ′J+1, . . . , C
′
B by querying the LOR oracle such that both

inputs are constructed as in hybrid Hj . It then constructs the ciphertext vector for customer i as
(C1, . . . , CJ , C

′
j+1, . . . , C

′
B) and gives this to A′ as Ci’s output in the Establish protocol. Note that if

the LOR oracle chooses the left input, the distribution of this vector is as in I.2, and if it chooses
the right input, the distribution is as in I.3. When A′ finalizes the channel with Ci, check that the
final balance of the customer is B − J , and if not, abort. Otherwise, finalize the channel and output
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A′’s guess as the guess for the LOR-CPA oracle. Note that the abort probability is at most 1/P ,
for P polynomial in λ. 2

B.2 Balance

We now sketch a proof that the scheme satisfies the Balance definition if the zero-knowledge proof
system is simulation extractable, the commitment scheme is binding, and the signature schemes are
EU-CMA secure. The primary observation in our proof is that if A, acting as a customer, is able to
succeed in obtaining claimedA > balA, this implies that one of the following conditions is true: (1) A
has successfully paid more than Bcust

0 coins on a given channel, (2) during the Finalization process,
A has successfully claimed more than the remaining number of coins on a given channel and the
honest merchant is not able to produce evidence of fraud. Similarly, a legal adversary A that wins
the game must succeed in either (3) producing evidence (as a merchant) of a doubly-spent coin,
even when the customer has behaved honestly, or (4) producing evidence of an invalid ciphertext
opening.

Let us first describe a simulated experiment, which is identical to the real protocol interaction
but with the following differences. First, if necessary we configure the proof system to allow for
the extraction of witnesses, and embed any resulting CRS into pp. Whenever A initiates the Pay
protocol (acting as a customer) to send a successful (accepted) payment, we then extract the witness
used to construct the proof π and abort the experiment if the extractor does not produce a valid
witness. In addition, we abort if A is able to submit more than B coins for any given channel
(identified by the witness), or if the attacker is able to submit a signature forgery (i.e., submit a
signature that was not granted through the Establish protocol). Finally, if the attacker Finalizes the
channel, extracting more than the remaining number of coins available on a given channel, we abort
(this implies that A has produced an additional spend value with respect to the commitment wCom).
We simulate all proofs issued during the Pay and Establish protocols. Whenever the adversary, acting
as a merchant, posts a channel closure message rcM such that Resolve executed on the customer
and merchant inputs outputs Bmerch

final > 0, where the final balance is inconsistent with the actual
remaining balance, we abort the protocol. We note that if there exists an adversary A who succeeds
in winning the Balance game with non-negligible advantage, then this implies an attacker with
the ability to distinguish the real experiment from the simulated experiment with non-negligible
advantage. We show that such an attacker represents a contradiction, assuming that the proof
system is sound and the signature scheme is EU-CMA. Consider the following hybrids:

Game 0. This is the real experiment.
Game 1. This game is identical to Game 0 except that we extract on every valid proof π1 in the

Establish protocol, every proof π in the Pay protocol, and every proof πjr that the customer
reveals as a result of a channle Finalization. We abort if the extractor ever fails to produce a
valid witness. Under the assumption that the proof system is sound, the abort probability is
negligible. Thus Adv [ Game 1 ] ≤ ν1(λ).

Game 2. This game is identical to Game 1 except that we abort if the customer ever presents
a collision in wCom (e.g., in the witness to any proof of knowledge). Assuming that the
commitment scheme is binding, Adv [ Game 2 ]−Adv [ Game 1 ] ≤ ν2(λ).

Game 3. This game is identical to Game 2 except that we abort if A is able to successfully
submit B′ > B coins on a given channel. Note that the serial number s is computed as a
function of the secret key k1 and the coin index 0 ≤ i < B. Thus, there are at most B distinct
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values of s for any given (signed) PRF seed k1. Thus, for this abort to occur, it must be the
case that A has forged a signature σw that was not issued during the Establish protocol. If
this occurs, we obtain an adversary B that succeeds against the EU-CMA security of the
signature. Since we assume that the signature scheme is EU-CMA secure, then we obtain
Adv [ Game 3 ]−Adv [ Game 2 ] ≤ ν3(λ).

Game 4. This game is identical to Game 3, except that we abort if A ever produces a ciphertext
Cj that contains a witness to the proof statement with an opening of the commitment
wCom that does not match with the corresponding values used in the Pay protocol. If this
occurs, this implies an attacker that violates the binding property of the commitment scheme.
Since we assume that the commitment scheme is binding, then we obtain Adv [ Game 4 ]−
Adv [ Game 3 ] ≤ ν4(λ).

Game 5. This game is identical to Game 4 except that whenever A presents signed evidence that
the customer has supplied an invalid ciphertext (that does not decrypt with key ckj), we abort.
Since no customer ever outputs invalid ciphertexts or keys, this implies that the adversary has
constructed a forged signature using the signature scheme. This implies that we can use A
to win the EU-CMA game against the signature scheme. Thus, under the assumption that
the signature scheme is EU-CMA secure, we have that Adv [ Game 5 ]−Adv [ Game 4 ] ≤
ν5(λ).

Game 6. This game is identical to Game 5 except that we simulate each zero knowledge proof
issued in the Pay and Establish protocols. Since the proof system is zero knowledge, we have
that Adv [ Game 6 ]−Adv [ Game 5 ] ≤ ν6(λ).

Game 7. This game is identical to Game 6 except that whenever A, acting as a merchant,
presents signed evidence of a doubly-spent coin that is accepted by the Resolve algorithm, we
abort. We argue that intuitively, such an adversary A can be used to break the EU-CMA
property of the signature scheme or the IND-CPA property of the symmetric encryption
scheme as follows. On input a public key in the EU-CMA game, embed this key as pkc. Now
guess an index J at which the payment channel will be closed. We further replace each of the
first J − 1 ciphertexts created during the Establish protocol with the encryption of a random
element. Now, if the adversary outputs a new proof, note that we can extract a witness to
the (new) proof, which is distinct from any of the previous proofs and therefore embeds a
valid secret key skc for the customer. This provides us with the signing key for the signature
scheme and allows us to forge a signature on any message. This proof requires that A cannot
distinguish the encryption of random messages from the encryption of valid proofs; this can be
shown using the IND-CPA property of the signature scheme. Completing this proof requires a
hybrid argument in which the above process is repeated for each customer. Thus, under the
assumption that the scheme is IND-CPA secure and the signature scheme is EU-CMA secure,
we have Adv [ Game 7 ]−Adv [ Game 6 ] ≤ ν7(λ).

By summation over the individual hybrids, we have that Adv [ Game 7 ] is negligible in the security
parameter. We note that the distribution of Game 7 is computationally indistinguishable from the
real experiment. Thus the simulation satisfies the property of Balance. 2
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C Proof of Theorem 4.2

Proof sketch. As in the previous proofs, the proof of Theorem 4.2 requires two separate arguments:
(1) that the scheme satisfies the anonymity property and (2) that the scheme satisfies the balance
property. We begin by addressing anonymity. Note that for this scheme we make the simplifying
assumption that the legal adversary does not abort the Pay protocol.

C.1 Anonymity

To prove that the scheme satisfies the anonymity property, we must describe a simulator SX−Y (·)(pp,
auxparams, ·) such that for all TM, no allowed adversary A can distinguish the Real experiment
from the Ideal experiment with non-negligible advantage. Recall that in the Ideal experiment (as
in the Real experiment), when the adversary A queries on channel initialization, establishment or
closure, the customer answers these queries by honestly running the appropriate algorithms. When
the adversary triggers a customer to initiate the Pay protocol, in the Real experiment the adversary
runs the protocol honestly. In the Ideal experiment, the customer’s side of the protocol is conducted
by S.

For all allowed adversaries A, the simulator S operates as follows. First, if required by the
zero-knowledge proof system, we generate a simulation CRS for the zero-knowledge proof system,
and embed this in pp.9 When A calls the simulator on a legal transaction, the simulator S emulates
the customer’s side of the Pay protocol, but with three differences: (1) the commitment wCom′ is
replaced with a commitment to a random message, (2) the simulator S generates a random public
key wpk when it runs the protocol, and (3), the simulator employs the ZK simulation algorithm to
simulate each of the zero-knowledge proofs. In all other ways it behaves as in the normal protocol,
generating wpk and σrev as usual.

To prove that the Real and Ideal experiments are indistinguishable, we will begin with Real
experiment, and modify elements via a series of games until we arrive at the Ideal experiment
conducted using our simulator S. Let ν1, ν2 be negligible functions. For notational convenience, let
Adv [ Game i ] be A’s advantage in distinguishing the output of Game i from the Real distribution.

Game 0. This is the real experiment.
Game 1. This game is identical to Game 0 except that each NIZK generated by a customer at

any stage of the Pay protocol interaction is replaced with a simulated proof. Note that we
require all legal adversaries to refuse to proceed subsequent to the failure of any Pay protocol
interaction, and we provide this information to S. Thus, If the proof system is zero-knowledge,
then Adv [ Game 1 ] ≤ ν1(λ).

Game 2. This game is identical to Game 1 except that the commitment wCom′ is replaced with
a commitment to a random message. If the commitment scheme is (computationally) hiding,
then Adv [ Game 2 ]−Adv [ Game 1 ] ≤ ν1(λ).

Game 3. This game is identical to Game 2 except that the value wpk is replaced with a random
key generated using the KeyGen algorithm. Note that the distribution of the replacement
wpk value is identical to the distribution of the original value, hence Adv [ Game 3 ] −
Adv [ Game 2 ] = 0.

By summation over the hybrids, we have that Adv [ Game 3 ] is negligible in the security parameter.
Since Game 3 is identical to the Ideal experiment, the bidirectional scheme is anonymous.

9This is necessary for certain proof systems such as [GS].
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C.2 Balance

To win the Balance game, a malicious adversary A must claim more money than actually available,
as measured by her expenditures and channel openings. We proceed by describing a simulated
experiment in which A wins the Balance game with probability 0, and proceed to show that the real
protocol interaction is computationally indistinguishable from this simulation, under the assumptions
that (1) the ZK proof system is simulation-extractable, (2) the signature scheme is EU-CMA secure,
(3) the commitment scheme is secure. To complete this argument, let us first define the following
hybrids.

Game 0. This is the real experiment.
Game 1. This game is identical to Game 0 except that we extract on every proof π1, π2 in the

Establish and Pay protocols and abort if the extractor fails. By the soundness of the proof
system, Adv [ Game 1 ] ≤ ν1(λ).

Game 2. This game is identical to Game 1 except that we abort if A ever presents a collision
in wCom (e.g., in the witness to any proof of knowledge). Assuming that the commitment
scheme is binding, Adv [ Game 2 ]−Adv [ Game 1 ] ≤ ν2(λ).

Game 3. This game is identical to Game 1 except that we abort if the extracted signature on
wCom is not on a message signed by the merchant (as indicated by the witnesses extracted in
the first game). Under the assumption that the signature scheme is EU-CMA, we have that
Adv [ Game 3 ]−Adv [ Game 2 ] ≤ ν3(λ).

Game 4. This game is identical to Game 2, except we abort if σw in the refund transaction
was not one produced by the merchant. Under the assumption that the signature scheme is
EU-CMA, we have that Adv [ Game 4 ]−Adv [ Game 3 ] ≤ ν4(λ).

In the following we will argue that no alllowed adversary can succeed in the Balance game against
Game 4. By summation over the hybrids we have that Game 4 s indistinguishable from Game 0,
and this implies that all allowed adversaries will succeed with at most negligible advantage against
the real protocol.

Let A be a p.p.t. adversary that succeeds with non-negligible advantage in the Balance game.
We argue that this implies one of the following events has occurred:

1. The adversarial customer has presented a signature σw (as a witness) that was not issued by
the merchant. This cannot occur in Game 4 as it would imply an abort due to a signature
forgery.

2. The adversarial customer has forged a zero-knowledge proof. This cannot occur in Game 4
as all proofs produce valid witnesses.

3. The adversarial customer has identified a collision in the commitment scheme. This cannot
occur in Game 4 as it would cause an abort.

4. The adversarial merchant has produced a refund token σrev that the honest customer did not
produce. This cannot occur in Game 4 as it would imply an abort due to a signature forgery.

Since these events do not occur in Game 4, the advantage of an adversary succeeding in this game
is 0. This concludes the sketch 2
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D Additional assumptions for the PRF

In this section we briefly sketch a proof that the Dodis-Yampolskiy pseudorandom function [DY05]
provides strong pre-image resistance if the q-DBDHI assumption holds in G.

The Dodis-Yampolskiy PRF. Let p be a prime and let I ⊂ Zp \ {0} be a polynomially-sized
input space. The public parameters for the Dodis-Yampolskiy PRF are a group G of prime order p
with generator g. The seed is a random element s ∈ Zp and the pseudorandom function is computed
as fs(x) = g1/(s+x). Security for the PRF over input space I with |I| = q is shown to hold under
the q-DBDHI assumption in [DY05].

The Dodis-Yampolskiy PRF provides strong pre-image resistance. We now sketch a proof
that the Dodis-Yampolskiy PRF provides strong pre-image resistance for a polynomially-sized
domain under the q-DBDHI assumption.

Our proof proceeds as follows. Let A be a p.p.t. adversary that, given access to an oracle FDYs

implementing the Dodis-Yampolskiy PRF with an honestly-generated seed s (with the restriction
that A can query only on elements in I) such that with non-negligible probability A outputs
(x, s′, x′) with x, x′ ∈ I and FDYs (x) = FDYs′ (x′). We show that A’s output can be used to recover
the seed for any PRF instance, thus violating the pseudorandomness property of the PRF.

To show this last step, we construct a distinguisher B against the pseudorandomness of the
Dodis-Yampolskiy scheme. B runs A internally and interacts with an oracle that implements either
the PRF or a random function. Each time A queries on some value xi, B queries its oracle on the
same value and returns the response to A. When A outputs (x, s′, x′) such that FDYs (x) = FDYs′ (x′),
B computes a candidate guess for the PRF seed as s̄ = s′ + x′ − x, and tests to see whether two or
more distinct outputs it receives from its oracle are consistent with s̄. If so, B outputs 1.

If B is interacting with an instance of the PRF, then A will succeed with non-negligible probability.
In this instance, the value s̄ will be equal to the PRF seed, because if FDYs (x) = FDYs′ (x′) then
this implies the relation g1/s+x = g1/s

′+x′ and thus s+ x = s′ + x′, yielding s = s′ + x′ − x. If B
is interacting with a random function, then there is no seed to recover, and the probability that
multiple oracle outputs are consistent with a recovered candidate seed is negligible. Thus B succeeds
with non-negligible probability. Since the pseudorandomness of the Dodis-Yampolskiy PRF is shown
to hold under the q-DBDHI assumption, this implies that the strong pre-image resistance must also
hold if q-DBDHI holds in G.

Other PRFs. While we recommend using the Dodis-Yampolskiy PRF for our constructions,
the strong pre-image resistance property holds for other PRFs. For example, hash-based PRFs
such as HMAC provide this property under the assumption that the underlying hash function is
collision-resistant, since the equality of two distinct outputs implies a collision in the hash function.
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